CT-based Machine Learning for Donor Lung Screening Prior to Transplantation.
medRxiv
; 2023 Mar 29.
Article
en En
| MEDLINE
| ID: mdl-37034670
Background: Assessment and selection of donor lungs remains largely subjective and experience based. Criteria to accept or decline lungs are poorly standardized and are not compliant with the current donor pool. Using ex vivo CT images, we investigated the use of a CT-based machine learning algorithm for screening donor lungs prior to transplantation. Methods: Clinical measures and ex-situ CT scans were collected from 100 cases as part of a prospective clinical trial. Following procurement, donor lungs were inflated, placed on ice according to routine clinical practice, and imaged using a clinical CT scanner prior to transplantation while stored in the icebox. We trained and tested a supervised machine learning method called dictionary learning , which uses CT scans and learns specific image patterns and features pertaining to each class for a classification task. The results were evaluated with donor and recipient clinical measures. Results: Of the 100 lung pairs donated, 70 were considered acceptable for transplantation (based on standard clinical assessment) prior to CT screening and were consequently implanted. The remaining 30 pairs were screened but not transplanted. Our machine learning algorithm was able to detect pulmonary abnormalities on the CT scans. Among the patients who received donor lungs, our algorithm identified recipients who had extended stays in the ICU and were at 19 times higher risk of developing CLAD within 2 years post-transplant. Conclusions: We have created a strategy to ex vivo screen donor lungs using a CT-based machine learning algorithm. As the use of suboptimal donor lungs rises, it is important to have in place objective techniques that will assist physicians in accurately screening donor lungs to identify recipients most at risk of post-transplant complications.
Texto completo:
1
Bases de datos:
MEDLINE
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
/
Screening_studies
Idioma:
En
Revista:
MedRxiv
Año:
2023
Tipo del documento:
Article
País de afiliación:
Estados Unidos