Your browser doesn't support javascript.
loading
Nano-Impact Single-Entity Electrochemistry Enables Plasmon-Enhanced Electrocatalysis.
Ganguli, Sagar; Zhao, Ziwen; Parlak, Onur; Hattori, Yocefu; Sá, Jacinto; Sekretareva, Alina.
Afiliación
  • Ganguli S; Department of Chemistry-Ångström, Uppsala University, 75120, Uppsala, Sweden.
  • Zhao Z; Department of Chemistry-Ångström, Uppsala University, 75120, Uppsala, Sweden.
  • Parlak O; Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, 17176, Stockholm, Sweden.
  • Hattori Y; Center for the Advancement of Integrated Medical and Engineering Science, Karolinska Institutet and KTH Royal Institute of Technology, 17177, Stockholm, Sweden.
  • Sá J; Department of Chemistry-Ångström, Uppsala University, 75120, Uppsala, Sweden.
  • Sekretareva A; Department of Chemistry-Ångström, Uppsala University, 75120, Uppsala, Sweden.
Angew Chem Int Ed Engl ; 62(25): e202302394, 2023 Jun 19.
Article en En | MEDLINE | ID: mdl-37078401
ABSTRACT
Plasmon-enhanced electrocatalysis (PEEC), based on a combination of localized surface plasmon resonance excitation and an electrochemical bias applied to a plasmonic material, can result in improved electrical-to-chemical energy conversion compared to conventional electrocatalysis. Here, we demonstrate the advantages of nano-impact single-entity electrochemistry (SEE) for investigating the intrinsic activity of plasmonic catalysts at the single-particle level using glucose electrooxidation and oxygen reduction on gold nanoparticles as model reactions. We show that in conventional ensemble measurements, plasmonic effects have minimal impact on photocurrents. We suggest that this is due to the continuous equilibration of the Fermi level (EF ) of the deposited gold nanoparticles with the EF of the working electrode, leading to fast neutralization of hot carriers by the measuring circuit. The photocurrents detected in the ensemble measurements are primarily caused by photo-induced heating of the supporting electrode material. In SEE, the EF of suspended gold nanoparticles is unaffected by the working electrode potential. As a result, plasmonic effects are the dominant source of photocurrents under SEE experimental conditions.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Nanopartículas del Metal / Oro Idioma: En Revista: Angew Chem Int Ed Engl Año: 2023 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Nanopartículas del Metal / Oro Idioma: En Revista: Angew Chem Int Ed Engl Año: 2023 Tipo del documento: Article País de afiliación: Suecia