Your browser doesn't support javascript.
loading
Construction of oxygen vacancy-rich ZnO@carbon nanofiber aerogels as a free-standing anode for superior lithium storage.
Cao, Mengjue; Feng, Yi; Wang, Duoying; Xie, Yuming; Gu, Xiaoli; Yao, Jianfeng.
Afiliación
  • Cao M; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
  • Feng Y; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
  • Wang D; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
  • Xie Y; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
  • Gu X; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
  • Yao J; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address: yaojianf@gmail.com.
J Colloid Interface Sci ; 644: 177-185, 2023 Aug 15.
Article en En | MEDLINE | ID: mdl-37105041
ABSTRACT
The development of next-generation high-capacity freestanding materials as electrodes in lithium-ion batteries (LIBs) has significant potential. Here, oxygen vacancy-rich ZnO (Ov-ZnO) deposited on carbonized bacterial cellulose (CBC) aerogels is developed via in-situ uniformly growing ZIF-8-NH2 particles on CBC aerogels, followed by the hydrazine reduction and pyrolysis. The CBC serves as a free-standing skeleton to disperse and support ZIF-8-NH2 derived ZnO while the introduction of oxygen vacancies can effectively promote the internal ion/electron transfer. As a result, the obtained free-standing aerogels (Ov-ZnO@CBC) displays a reversible capacity of 710 mAh g-1 at 1 A g-1 after 1000 cycles, which is superior to ZnO@CBC without hydrazine reduction treatment. Furthermore, the assembled Li free-standing full cell using the Ov-ZnO@CBC composite as the anode and BC@LiFePO4 (BC@LFP) as the cathode exhibits an outstanding cycling performance of 150 mAh g-1 after 100 cycles at 0.1 A g-1, displaying satisfactory lithium-ion storage capability. It is noteworthy that both Ov-ZnO@CBC and BC@LFP are obtained in the form of a free-standing aerogel. This work offers a strategy to prepare high-capacity and long-cycle self-supporting aerogel-based electrodes for flexible LIBs.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2023 Tipo del documento: Article País de afiliación: China