Your browser doesn't support javascript.
loading
Growth of wafer-scale chromium sulphide and selenide semiconductor films.
Yao, Bing; Liu, Weilin; Zhou, Xiaoxiang; Yang, Jiangfeng; Huang, Xianlei; Fu, Zihao; Yuan, Guowen; Nie, Yuefeng; Dai, Yaomin; Xu, Jie; Gao, Libo.
Afiliación
  • Yao B; National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China.
  • Liu W; National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China.
  • Zhou X; National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China.
  • Yang J; National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210033, People's Republic of China.
  • Huang X; National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China.
  • Fu Z; National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China.
  • Yuan G; National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China.
  • Nie Y; National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210033, People's Republic of China.
  • Dai Y; National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China.
  • Xu J; National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China.
  • Gao L; National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China.
J Phys Condens Matter ; 35(33)2023 May 23.
Article en En | MEDLINE | ID: mdl-37172598
ABSTRACT
Two-dimensional (2D) transition metal chalcogenides have attracted enormous attention due to their stunning properties and great prospects for applications. Most of the reported 2D materials have layered structure, and non-layered transition metal chalcogenides are rare. Particularly, chromium chalcogenides are highly complexed in terms of structural phases. Researches on their representative chalcogenides, Cr2S3and Cr2Se3, are insufficient and most of them focus on individual crystal grains. In this study, large-scale Cr2S3and Cr2Se3films with controllable thickness are successfully grown, and their crystalline qualities are confirmed by multiple characterizations. Moreover, the thickness-dependent Raman vibrations are investigated systematically, presenting slight redshift with increasing thickness. The fundamental physical properties of grown Cr2S3and Cr2Se3films, including optical bandgap, activation energy and electrical properties, are measured with different thicknesses. The 1.9 nm thick Cr2S3and Cr2Se3films show narrow optical bandgap of 0.732 and 0.672 eV, respectively. The electrical properties of Cr2S3films demonstratep-type semiconductor behaviours, while the Cr2Se3films exhibit no gate response. This work can provide a feasible method for growing large-scale Cr2S3and Cr2Se3films, and reveal fundamental information of their physical properties, which is helpful for future applications.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: J Phys Condens Matter Asunto de la revista: BIOFISICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: J Phys Condens Matter Asunto de la revista: BIOFISICA Año: 2023 Tipo del documento: Article