Your browser doesn't support javascript.
loading
Deep learning-based electrocardiographic screening for chronic kidney disease.
Holmstrom, Lauri; Christensen, Matthew; Yuan, Neal; Weston Hughes, J; Theurer, John; Jujjavarapu, Melvin; Fatehi, Pedram; Kwan, Alan; Sandhu, Roopinder K; Ebinger, Joseph; Cheng, Susan; Zou, James; Chugh, Sumeet S; Ouyang, David.
Afiliación
  • Holmstrom L; Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Christensen M; Center for Cardiac Arrest Prevention, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Yuan N; Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.
  • Weston Hughes J; Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Theurer J; Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Jujjavarapu M; Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Fatehi P; Department of Medicine, Division of Cardiology, San Francisco VA, UCSF, San Francisco, CA, USA.
  • Kwan A; Department of Computer Science, Stanford University, Palo Alto, CA, USA.
  • Sandhu RK; Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Ebinger J; Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Cheng S; Enterprise Information Service, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Zou J; Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, CA, USA.
  • Chugh SS; Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Ouyang D; Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Commun Med (Lond) ; 3(1): 73, 2023 May 26.
Article en En | MEDLINE | ID: mdl-37237055
Chronic kidney disease (CKD) is a common condition involving loss of kidney function over time and results in a substantial number of deaths. However, CKD often has no symptoms during its early stages. To detect CKD earlier, we developed a computational approach for CKD screening using routinely acquired electrocardiograms (ECGs), a cheap, rapid, non-invasive, and commonly obtained test of the heart's electrical activity. Our model achieved good accuracy in identifying any stage of CKD, with especially high accuracy in younger patients and more severe stages of CKD. Given the high global burden of undiagnosed CKD, novel and accessible CKD screening strategies have the potential to help prevent disease progression and reduce premature deaths related to CKD.

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Idioma: En Revista: Commun Med (Lond) Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Idioma: En Revista: Commun Med (Lond) Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos