Your browser doesn't support javascript.
loading
Breaking K+ Concentration Limit on Cu Nanoneedles for Acidic Electrocatalytic CO2 Reduction to Multi-Carbon Products.
Zi, Xin; Zhou, Yajiao; Zhu, Li; Chen, Qin; Tan, Yao; Wang, Xiqing; Sayed, Mahmoud; Pensa, Evangelina; Geioushy, Ramadan A; Liu, Kang; Fu, Junwei; Cortés, Emiliano; Liu, Min.
Afiliación
  • Zi X; Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China.
  • Zhou Y; Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China.
  • Zhu L; Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539, München, Germany.
  • Chen Q; Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China.
  • Tan Y; Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China.
  • Wang X; Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China.
  • Sayed M; Chemistry Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt.
  • Pensa E; Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539, München, Germany.
  • Geioushy RA; Central Metallurgical Research and Development Institute, CMRDI P.O. Box: 87, Helwan, 11421, Cairo, Egypt.
  • Liu K; Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China.
  • Fu J; Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China.
  • Cortés E; Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539, München, Germany.
  • Liu M; Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China.
Angew Chem Int Ed Engl ; 62(42): e202309351, 2023 Oct 16.
Article en En | MEDLINE | ID: mdl-37639659
Electrocatalytic CO2 reduction reaction (CO2 RR) to multi-carbon products (C2+ ) in acidic electrolyte is one of the most advanced routes for tackling our current climate and energy crisis. However, the competing hydrogen evolution reaction (HER) and the poor selectivity towards the valuable C2+ products are the major obstacles for the upscaling of these technologies. High local potassium ions (K+ ) concentration at the cathode's surface can inhibit proton-diffusion and accelerate the desirable carbon-carbon (C-C) coupling process. However, the solubility limit of potassium salts in bulk solution constrains the maximum achievable K+ concentration at the reaction sites and thus the overall acidic CO2 RR performance of most electrocatalysts. In this work, we demonstrate that Cu nanoneedles induce ultrahigh local K+ concentrations (4.22 M) - thus breaking the K+ solubility limit (3.5 M) - which enables a highly efficient CO2 RR in 3 M KCl at pH=1. As a result, a Faradaic efficiency of 90.69±2.15 % for C2+ (FEC2+ ) can be achieved at 1400 mA.cm-2 , simultaneous with a single pass carbon efficiency (SPCE) of 25.49±0.82 % at a CO2 flow rate of 7 sccm.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2023 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2023 Tipo del documento: Article