Your browser doesn't support javascript.
loading
Application of life cycle assessment to high quality-soil conditioner production from biowaste.
Arfelli, Francesco; Cespi, Daniele; Ciacci, Luca; Passarini, Fabrizio.
Afiliación
  • Arfelli F; Department of Industrial Chemistry "Toso Montanari", University of Bologna, via Piero Gobetti 85, 40129 Bologna, Italy.
  • Cespi D; Department of Industrial Chemistry "Toso Montanari", University of Bologna, via Piero Gobetti 85, 40129 Bologna, Italy; Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, via Angherà 22, 47922 Rimini, Italy. Electronic address:
  • Ciacci L; Department of Industrial Chemistry "Toso Montanari", University of Bologna, via Piero Gobetti 85, 40129 Bologna, Italy; Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, via Angherà 22, 47922 Rimini, Italy.
  • Passarini F; Department of Industrial Chemistry "Toso Montanari", University of Bologna, via Piero Gobetti 85, 40129 Bologna, Italy; Interdepartmental Centre of Industrial Research "Renewable Resources, Environment, Sea and Energy", University of Bologna, via Angherà 22, 47922 Rimini, Italy.
Waste Manag ; 172: 216-225, 2023 Dec 01.
Article en En | MEDLINE | ID: mdl-37924597
ABSTRACT
The recent large-scale urbanization and industrialization resulted in an impressive growth of solid waste generation worldwide. Organic fraction generally constitutes a large fraction of municipal solid waste and its peculiar chemical properties open to various valorization strategies. On this purpose, life cycle assessment is applied to an innovative industrial system that processes 18 kt/y of agricultural and livestock waste into a high-quality soil conditioner. The high-quality soil conditioner production system consists of a series of processes, including anaerobic digestion and vermicomposting, allowing the generation of a peat-like material with high carbon content, porosity, and water-holding capacity. The presence of a photovoltaic plant and a cogeneration plant, fed with the biogas produced in the anaerobic digestion, makes the system entirely self-sufficient from the national grid and generating a surplus of electricity of 1177MWh/y. The high-quality soil conditioner showed better environmental performances in 15 out of 18 impact categories when compared to alternative scenarios. In particular, the high-quality soil conditioner and the related biowaste management resulted in a carbon saving of around 397 kg CO2 eq/ton compared with a scenario involving the employment of peat in place of the high-quality soil conditioner and a traditional biowaste management, and 165 kg CO2 eq/ton compared with a scenario where cogeneration is replaced by biomethane upgrading. This study demonstrates the possibility of using organic waste as an environmentally sustainable and renewable source for energy and carbon to soil conditioning.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Suelo / Residuos Sólidos Límite: Animals Idioma: En Revista: Waste Manag Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Suelo / Residuos Sólidos Límite: Animals Idioma: En Revista: Waste Manag Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Italia