Your browser doesn't support javascript.
loading
Development of a semi-automated MHC-associated peptide proteomics (MAPPs) method using streptavidin bead-based immunoaffinity capture and nano LC-MS/MS to support immunogenicity risk assessment in drug development.
Lee, M Violet; Saad, Ola M; Wong, Sylvia; LaMar, Jason; Kamen, Lynn; Ordonia, Ben; Melendez, Rachel; Hassanzadeh, Azadeh; Chung, Shan; Kaur, Surinder.
Afiliación
  • Lee MV; Department of Bioanalytical Sciences, Genentech, Inc., South San Francisco, CA, United States.
  • Saad OM; Department of Bioanalytical Sciences, Genentech, Inc., South San Francisco, CA, United States.
  • Wong S; Department of Bioanalytical Sciences, Genentech, Inc., South San Francisco, CA, United States.
  • LaMar J; Department of Bioanalytical Sciences, Genentech, Inc., South San Francisco, CA, United States.
  • Kamen L; Department of Bioanalytical Sciences, Genentech, Inc., South San Francisco, CA, United States.
  • Ordonia B; Department of Bioanalytical Sciences, Genentech, Inc., South San Francisco, CA, United States.
  • Melendez R; Department of Bioanalytical Sciences, Genentech, Inc., South San Francisco, CA, United States.
  • Hassanzadeh A; Department of Bioanalytical Sciences, Genentech, Inc., South San Francisco, CA, United States.
  • Chung S; Department of Bioanalytical Sciences, Genentech, Inc., South San Francisco, CA, United States.
  • Kaur S; Department of Bioanalytical Sciences, Genentech, Inc., South San Francisco, CA, United States.
Front Immunol ; 14: 1295285, 2023.
Article en En | MEDLINE | ID: mdl-38022649
ABSTRACT
Major histocompatibility complex (MHC)-Associated Peptide Proteomics (MAPPs) is an ex vivo method used to assess the immunogenicity risk of biotherapeutics. MAPPs can identify potential T-cell epitopes within the biotherapeutic molecule. Using adalimumab treated human monocyte derived dendritic cells (DCs) and a pan anti-HLA-DR antibody (Ab), we systematically automated and optimized biotin/streptavidin (SA)-capture antibody coupling, lysate incubation with capture antibody, as well as the washing and elution steps of a MAPPs method using functionalized magnetic beads and a KingFisher Magnetic Particle processor. Automation of these steps, combined with capturing using biotinylated-Ab/SA magnetic beads rather than covalently bound antibody, improved reproducibility as measured by minimal inter-and intra-day variability, as well as minimal analyst-to-analyst variability. The semi-automated MAPPs workflow improved sensitivity, allowing for a lower number of cells per analysis. The method was assessed using five different biotherapeutics with varying immunogenicity rates ranging from 0.1 to 48% ADA incidence in the clinic. Biotherapeutics with ≥10%immunogenicity incidence consistently presented more peptides (1.8-28 fold) and clusters (10-21 fold) compared to those with <10% immunogenicity incidence. Our semi-automated MAPPs method provided two main advantages over a manual workflow- the robustness and reproducibility affords confidence in the epitopes identified from as few as 5 to 10 donors and the method workflow can be readily adapted to incorporate different capture Abs in addition to anti-HLA-DR. The incorporation of semi-automated MAPPs with biotinylated-Ab/SA bead-based capture in immunogenicity screening strategies allows the generation of more consistent and reliable data, helping to improve immunogenicity prediction capabilities in drug development. MHC associated peptide proteomics (MAPPs), Immunogenicity risk assessment, in vitro/ex vivo, biotherapeutics, Major Histocompatibility Complex Class II (MHC II), LC-MS, Immunoaffinity Capture, streptavidin magnetic beads.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proteómica / Espectrometría de Masas en Tándem Límite: Humans Idioma: En Revista: Front Immunol Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proteómica / Espectrometría de Masas en Tándem Límite: Humans Idioma: En Revista: Front Immunol Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos