Insight into the potential mechanism of bicarbonate assimilation promoted by mixotrophic in CO2 absorption and microalgae conversion system.
Chemosphere
; 349: 140903, 2024 Feb.
Article
en En
| MEDLINE
| ID: mdl-38092167
CO2 absorption-microalgae conversion (CAMC) system is a promising carbon capture and utilization technology. However, the use of HCO3- as a carbon source often led to a slower growth rate of microalgae, which also limited the application of CAMC system. In this study, the assimilation efficiency of HCO3- in CAMC system was improved through mixotrophic, and the potential mechanism was investigated. The HCO3- assimilation efficiency and biomass under mixotrophic were 34.79% and 31.76% higher than that of control. Mixotrophic increased chlorophyll and phycocyanin content, which were beneficial to capture more light energy. The content of ATP and NADPH reached 566.86 µmol/gprot and 672.86 nmol/mgprot, which increased by 31.83% and 27.67% compared to autotrophic. The activity of carbonic anhydrase and Rubisco increased by 18.52% and 22.08%, respectively. Transcriptome showed that genes related to photosynthetic and respiratory electron transport were up-regulated. The synergy of photophosphorylation and oxidative phosphorylation greatly improved energy metabolism efficiency, thus accelerating the assimilation of HCO3-. These results revealed a potential mechanism of promoting the HCO3- assimilation under mixotrophic, it also provided a guidance for using CAMC system to serve carbon neutrality.
Palabras clave
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Bicarbonatos
/
Microalgas
Idioma:
En
Revista:
Chemosphere
Año:
2024
Tipo del documento:
Article