Your browser doesn't support javascript.
loading
Highway Visibility Estimation in Foggy Weather via Multi-Scale Fusion Network.
Xiao, Pengfei; Zhang, Zhendong; Luo, Xiaochun; Sun, Jiaqing; Zhou, Xuecheng; Yang, Xixi; Huang, Liang.
Afiliación
  • Xiao P; Key Laboratory of Transportation Meteorology, China Meteorological Administration, Nanjing 210019, China.
  • Zhang Z; Jiangsu Provincial Meteorological Service Center, Nanjing 210019, China.
  • Luo X; Key Laboratory of Transportation Meteorology, China Meteorological Administration, Nanjing 210019, China.
  • Sun J; Jiangsu Provincial Meteorological Service Center, Nanjing 210019, China.
  • Zhou X; Key Laboratory of Transportation Meteorology, China Meteorological Administration, Nanjing 210019, China.
  • Yang X; Jiangsu Provincial Meteorological Service Center, Nanjing 210019, China.
  • Huang L; Key Laboratory of Transportation Meteorology, China Meteorological Administration, Nanjing 210019, China.
Sensors (Basel) ; 23(24)2023 Dec 10.
Article en En | MEDLINE | ID: mdl-38139585
ABSTRACT
Poor visibility has a significant impact on road safety and can even lead to traffic accidents. The traditional means of visibility monitoring no longer meet the current needs in terms of temporal and spatial accuracy. In this work, we propose a novel deep network architecture for estimating the visibility directly from highway surveillance images. Specifically, we employ several image feature extraction methods to extract detailed structural, spectral, and scene depth features from the images. Next, we design a multi-scale fusion network to adaptively extract and fuse vital features for the purpose of estimating visibility. Furthermore, we create a real-scene dataset for model learning and performance evaluation. Our experiments demonstrate the superiority of our proposed method to the existing methods.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China