Your browser doesn't support javascript.
loading
Basic and translational evidence supporting the role of TM6SF2 in VLDL metabolism.
Liu, Jing; Ginsberg, Henry N; Reyes-Soffer, Gissette.
Afiliación
  • Liu J; Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.
Curr Opin Lipidol ; 35(3): 157-161, 2024 06 01.
Article en En | MEDLINE | ID: mdl-38465912
ABSTRACT
PURPOSE OF REVIEW Transmembrane 6 superfamily member 2 ( TM6SF2 ) gene was identified through exome-wide studies in 2014. A genetic variant from glutamic acid to lysine substitution at amino acid position 167 (NM_001001524.3c.499G> A) (p.Gln167Lys/p.E167K, rs58542926) was discovered (p.E167K) to be highly associated with increased hepatic fat content and reduced levels of plasma triglycerides and LDL cholesterol. In this review, we focus on the discovery of TM6SF2 and its role in VLDL secretion pathways. Human data suggest TM6SF2 is linked to hepatic steatosis and cardiovascular disease (CVD), hence understanding its metabolic pathways is of high scientific interest. RECENT

FINDINGS:

Since its discovery, completed research studies in cell, rodent and human models have defined the role of TM6SF2 and its links to human disease. TM6SF2 resides in the endoplasmic reticulum (ER) and the ER-Golgi interface and helps with the lipidation of nascent VLDL, the main carrier of triglycerides from the liver to the periphery. Consistent results from cells and rodents indicated that the secretion of triglycerides is reduced in carriers of the p.E167K variant or when hepatic TM6SF2 is deleted. However, data for secretion of APOB, the main protein of VLDL particles responsible for triglycerides transport, are inconsistent.

SUMMARY:

The identification of genetic variants that are highly associated with human disease presentation should be followed by the validation and investigation into the pathways that regulate disease mechanisms. In this review, we highlight the role of TM6SF2 and its role in processing of liver triglycerides.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Lipoproteínas VLDL / Proteínas de la Membrana Límite: Animals / Humans Idioma: En Revista: Curr Opin Lipidol Asunto de la revista: BIOQUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Lipoproteínas VLDL / Proteínas de la Membrana Límite: Animals / Humans Idioma: En Revista: Curr Opin Lipidol Asunto de la revista: BIOQUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos