Your browser doesn't support javascript.
loading
Genetic regulation of carnitine metabolism controls lipid damage repair and aging RBC hemolysis in vivo and in vitro.
Nemkov, Travis; Key, Alicia; Stephenson, Daniel; Earley, Eric J; Keele, Gregory R; Hay, Ariel; Amireault, Pascal; Casimir, Madeleine; Dussiot, Michaël; Dzieciatkowska, Monika; Reisz, Julie A; Deng, Xutao; Stone, Mars; Kleinman, Steve; Spitalnik, Steven L; Hansen, Kirk C; Norris, Philip J; Churchill, Gary A; Busch, Michael P; Roubinian, Nareg; Page, Grier P; Zimring, James C; Arduini, Arduino; D'Alessandro, Angelo.
Afiliación
  • Nemkov T; Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO.
  • Key A; Omix Technologies Inc, Aurora, CO.
  • Stephenson D; Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO.
  • Earley EJ; Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO.
  • Keele GR; Genomics and Translational Research Center, RTI International, Research Triangle Park, NC.
  • Hay A; Genomics and Translational Research Center, RTI International, Research Triangle Park, NC.
  • Amireault P; The Jackson Laboratory, Bar Harbor, ME.
  • Casimir M; Department of Pathology, University of Virginia, Charlottesville, VA.
  • Dussiot M; Université Paris Cité et Université des Antilles, INSERM, Biologie Intégrée du Globule Rouge, Paris, France.
  • Dzieciatkowska M; Université Paris Cité, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Paris, France.
  • Reisz JA; Université Paris Cité et Université des Antilles, INSERM, Biologie Intégrée du Globule Rouge, Paris, France.
  • Deng X; Université Paris Cité, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Paris, France.
  • Stone M; Université Paris Cité et Université des Antilles, INSERM, Biologie Intégrée du Globule Rouge, Paris, France.
  • Kleinman S; Université Paris Cité, Institut Imagine, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Paris, France.
  • Spitalnik SL; Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO.
  • Hansen KC; Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO.
  • Norris PJ; Vitalant Research Institute, San Francisco, CA.
  • Churchill GA; Vitalant Research Institute, San Francisco, CA.
  • Busch MP; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA.
  • Roubinian N; The University of British Columbia, Victoria, BC, Canada.
  • Page GP; Department of Pathology and Cell Biology, Columbia University, New York, NY.
  • Zimring JC; Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO.
  • Arduini A; Vitalant Research Institute, San Francisco, CA.
  • D'Alessandro A; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA.
Blood ; 143(24): 2517-2533, 2024 Jun 13.
Article en En | MEDLINE | ID: mdl-38513237
ABSTRACT
ABSTRACT Recent large-scale multiomics studies suggest that genetic factors influence the chemical individuality of donated blood. To examine this concept, we performed metabolomics analyses of 643 blood units from volunteers who donated units of packed red blood cells (RBCs) on 2 separate occasions. These analyses identified carnitine metabolism as the most reproducible pathway across multiple donations from the same donor. We also measured l-carnitine and acyl-carnitines in 13 091 packed RBC units from donors in the Recipient Epidemiology and Donor Evaluation study. Genome-wide association studies against 879 000 polymorphisms identified critical genetic factors contributing to interdonor heterogeneity in end-of-storage carnitine levels, including common nonsynonymous polymorphisms in genes encoding carnitine transporters (SLC22A16, SLC22A5, and SLC16A9); carnitine synthesis (FLVCR1 and MTDH) and metabolism (CPT1A, CPT2, CRAT, and ACSS2), and carnitine-dependent repair of lipids oxidized by ALOX5. Significant associations between genetic polymorphisms on SLC22 transporters and carnitine pools in stored RBCs were validated in 525 Diversity Outbred mice. Donors carrying 2 alleles of the rs12210538 SLC22A16 single-nucleotide polymorphism exhibited the lowest l-carnitine levels, significant elevations of in vitro hemolysis, and the highest degree of vesiculation, accompanied by increases in lipid peroxidation markers. Separation of RBCs by age, via in vivo biotinylation in mice, and Percoll density gradients of human RBCs, showed age-dependent depletions of l-carnitine and acyl-carnitine pools, accompanied by progressive failure of the reacylation process after chemically induced membrane lipid damage. Supplementation of stored murine RBCs with l-carnitine boosted posttransfusion recovery, suggesting this could represent a viable strategy to improve RBC storage quality.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Carnitina / Eritrocitos / Hemólisis Límite: Animals / Female / Humans / Male Idioma: En Revista: Blood Año: 2024 Tipo del documento: Article País de afiliación: Colombia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Carnitina / Eritrocitos / Hemólisis Límite: Animals / Female / Humans / Male Idioma: En Revista: Blood Año: 2024 Tipo del documento: Article País de afiliación: Colombia