Your browser doesn't support javascript.
loading
Annotation-free prediction of treatment-specific tissue outcome from 4D CT perfusion imaging in acute ischemic stroke.
Gutierrez, Alejandro; Amador, Kimberly; Winder, Anthony; Wilms, Matthias; Fiehler, Jens; Forkert, Nils D.
Afiliación
  • Gutierrez A; Department of Radiology, University of Calgary, Calgary, AB T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada; Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB T2N 1N4, Canada; Alberta Children's Hospital Research Institute, Uni
  • Amador K; Department of Radiology, University of Calgary, Calgary, AB T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada; Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB T2N 1N4, Canada; Alberta Children's Hospital Research Institute, Uni
  • Winder A; Department of Radiology, University of Calgary, Calgary, AB T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada.
  • Wilms M; Department of Radiology, University of Calgary, Calgary, AB T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Pediatrics, University of Calg
  • Fiehler J; Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg 20251, Germany.
  • Forkert ND; Department of Radiology, University of Calgary, Calgary, AB T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Clinical Neurosciences, Univer
Comput Med Imaging Graph ; 114: 102376, 2024 06.
Article en En | MEDLINE | ID: mdl-38537536
ABSTRACT
Acute ischemic stroke is a critical health condition that requires timely intervention. Following admission, clinicians typically use perfusion imaging to facilitate treatment decision-making. While deep learning models leveraging perfusion data have demonstrated the ability to predict post-treatment tissue infarction for individual patients, predictions are often represented as binary or probabilistic masks that are not straightforward to interpret or easy to obtain. Moreover, these models typically rely on large amounts of subjectively segmented data and non-standard perfusion analysis techniques. To address these challenges, we propose a novel deep learning approach that directly predicts follow-up computed tomography images from full spatio-temporal 4D perfusion scans through a temporal compression. The results show that this method leads to realistic follow-up image predictions containing the infarcted tissue outcomes. The proposed compression method achieves comparable prediction results to using perfusion maps as inputs but without the need for perfusion analysis or arterial input function selection. Additionally, separate models trained on 45 patients treated with thrombolysis and 102 treated with thrombectomy showed that each model correctly captured the different patient-specific treatment effects as shown by image difference maps. The findings of this work clearly highlight the potential of our method to provide interpretable stroke treatment decision support without requiring manual annotations.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Isquemia Encefálica / Accidente Cerebrovascular / Accidente Cerebrovascular Isquémico Límite: Humans Idioma: En Revista: Comput Med Imaging Graph Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Isquemia Encefálica / Accidente Cerebrovascular / Accidente Cerebrovascular Isquémico Límite: Humans Idioma: En Revista: Comput Med Imaging Graph Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article