Your browser doesn't support javascript.
loading
Computational role of structure in neural activity and connectivity.
Ostojic, Srdjan; Fusi, Stefano.
Afiliación
  • Ostojic S; Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL Research University, 75005 Paris, France. Electronic address: srdjan.ostojic@ens.psl.eu.
  • Fusi S; Center for Theoretical Neuroscience, Columbia University, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Neuroscience, Columbia University, New York, NY, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
Trends Cogn Sci ; 28(7): 677-690, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38553340
ABSTRACT
One major challenge of neuroscience is identifying structure in seemingly disorganized neural activity. Different types of structure have different computational implications that can help neuroscientists understand the functional role of a particular brain area. Here, we outline a unified approach to characterize structure by inspecting the representational geometry and the modularity properties of the recorded activity and show that a similar approach can also reveal structure in connectivity. We start by setting up a general framework for determining geometry and modularity in activity and connectivity and relating these properties with computations performed by the network. We then use this framework to review the types of structure found in recent studies of model networks performing three classes of computations.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Encéfalo / Modelos Neurológicos / Red Nerviosa Límite: Animals / Humans Idioma: En Revista: Trends Cogn Sci Asunto de la revista: PSICOLOGIA Año: 2024 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Encéfalo / Modelos Neurológicos / Red Nerviosa Límite: Animals / Humans Idioma: En Revista: Trends Cogn Sci Asunto de la revista: PSICOLOGIA Año: 2024 Tipo del documento: Article