Your browser doesn't support javascript.
loading
A digital twin of the infant microbiome to predict neurodevelopmental deficits.
Sizemore, Nicholas; Oliphant, Kaitlyn; Zheng, Ruolin; Martin, Camilia R; Claud, Erika C; Chattopadhyay, Ishanu.
Afiliación
  • Sizemore N; Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
  • Oliphant K; Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA.
  • Zheng R; Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
  • Martin CR; Division of Neonatology, Weill Cornell Medicine, New York, NY 10021, USA.
  • Claud EC; Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA.
  • Chattopadhyay I; Neonatology Research, University of Chicago, Chicago, IL 60637, USA.
Sci Adv ; 10(15): eadj0400, 2024 Apr 12.
Article en En | MEDLINE | ID: mdl-38598636
ABSTRACT
Despite the recognized gut-brain axis link, natural variations in microbial profiles between patients hinder definition of normal abundance ranges, confounding the impact of dysbiosis on infant neurodevelopment. We infer a digital twin of the infant microbiome, forecasting ecosystem trajectories from a few initial observations. Using 16S ribosomal RNA profiles from 88 preterm infants (398 fecal samples and 32,942 abundance estimates for 91 microbial classes), the model (Q-net) predicts abundance dynamics with R2 = 0.69. Contrasting the fit to Q-nets of typical versus suboptimal development, we can reliably estimate individual deficit risk (Mδ) and identify infants achieving poor future head circumference growth with ≈76% area under the receiver operator characteristic curve, 95% ± 1.8% positive predictive value at 98% specificity at 30 weeks postmenstrual age. We find that early transplantation might mitigate risk for ≈45.2% of the cohort, with potentially negative effects from incorrect supplementation. Q-nets are generative artificial intelligence models for ecosystem dynamics, with broad potential applications.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Microbiota / Microbioma Gastrointestinal Límite: Humans / Infant / Newborn Idioma: En Revista: Sci Adv Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Microbiota / Microbioma Gastrointestinal Límite: Humans / Infant / Newborn Idioma: En Revista: Sci Adv Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos