Your browser doesn't support javascript.
loading
Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H2O-Fe(III)-As(V)-SO42- Systems: Implications for Acid Mine Drainage and Arsenic Geochemical Cycling.
Ma, Xu; Yuan, Zidan; Lin, Jinru; Cui, Yubo; Wang, Shaofeng; Pan, Yuanming; Chernikov, Roman; Long Cheung, Leo Ka; Deevsalar, Reza; Jia, Yongfeng.
Afiliación
  • Ma X; College of Environment and Resources, Dalian Minzu University, Dalian 116600, China.
  • Yuan Z; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
  • Lin J; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
  • Cui Y; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
  • Wang S; College of Environment and Resources, Dalian Minzu University, Dalian 116600, China.
  • Pan Y; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
  • Chernikov R; Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada.
  • Long Cheung LK; Canadian Light Source, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0 × 4, Canada.
  • Deevsalar R; Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada.
  • Jia Y; Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada.
Environ Sci Technol ; 58(16): 7176-7185, 2024 Apr 23.
Article en En | MEDLINE | ID: mdl-38606801
ABSTRACT
Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various Fe(III)/As(V) ratios (2, 1, 0.5, 0.33, and 0.25) in acidic solutions (pH 1.2 and 1.8). The results show that the Fe(III)/As(V) in HFA decreases with decreasing initial Fe(III)/As(V) at acidic pHs. The degree of protonation of As(V) in HFA increases with increasing As(V) concentrations. The Fe K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure results reveal that each FeO6 is linked to more than two AsO4 in HFA precipitated at Fe(III)/As(V) < 1. Furthermore, the formation of scorodite (FeAsO4·2H2O) is greatly accelerated by decreasing the initial Fe(III)/As(V). The release of As(V) from HFA is observed during its crystallization transformation process to scorodite at Fe(III)/As(V) < 1, which is different from that at Fe(III)/As(V) ≥ 1. Scanning electron microscopy results show that Oswald ripening is responsible for the coarsening of scorodite regardless of the initial Fe(III)/As(V) or pH. Moreover, the formation of crystalline ferric dihydrogen arsenate as an intermediate phase at Fe(III)/As(V) < 1 is responsible for the enhanced transformation rate from HFA to scorodite. This work provides new insights into the local atomic structure of HFA and its crystallization transformation that may occur in AMD and has important implications for arsenic geochemical cycling.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Environ Sci Technol Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Environ Sci Technol Año: 2024 Tipo del documento: Article País de afiliación: China