Your browser doesn't support javascript.
loading
Engineering Small HOMO-LUMO Gaps in Polycyclic Aromatic Hydrocarbons with Topologically Protected States.
Slicker, Kaitlin; Delgado, Aidan; Jiang, Jingwei; Tang, Weichen; Cronin, Adam; Blackwell, Raymond E; Louie, Steven G; Fischer, Felix R.
Afiliación
  • Slicker K; Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.
  • Delgado A; Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.
  • Jiang J; Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States.
  • Tang W; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Cronin A; Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States.
  • Blackwell RE; Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.
  • Louie SG; Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.
  • Fischer FR; Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States.
Nano Lett ; 24(17): 5387-5392, 2024 May 01.
Article en En | MEDLINE | ID: mdl-38629638
ABSTRACT
Topological phases in laterally confined low-dimensional nanographenes have emerged as versatile design tools that can imbue otherwise unremarkable materials with exotic band structures ranging from topological semiconductors and quantum dots to intrinsically metallic bands. The periodic boundary conditions that define the topology of a given lattice have thus far prevented the translation of this technology to the quasi-zero-dimensional (0D) domain of small molecular structures. Here, we describe the synthesis of a polycyclic aromatic hydrocarbon (PAH) featuring two localized zero modes (ZMs) formed by the topological junction interface between a trivial and nontrivial phase within a single molecule. First-principles density functional theory calculations predict a strong hybridization between adjacent ZMs that gives rise to an exceptionally small HOMO-LUMO gap. Scanning tunneling microscopy and spectroscopy corroborate the molecular structure of 9/7/9-double quantum dots and reveal an experimental quasiparticle gap of 0.16 eV, corresponding to a carbon-based small molecule long-wavelength infrared (LWIR) absorber.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos