Your browser doesn't support javascript.
loading
m6ACali: machine learning-powered calibration for accurate m6A detection in MeRIP-Seq.
Ye, Haokai; Li, Tenglong; Rigden, Daniel J; Wei, Zhen.
Afiliación
  • Ye H; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China.
  • Li T; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK.
  • Rigden DJ; Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
  • Wei Z; Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA.
Nucleic Acids Res ; 52(9): 4830-4842, 2024 May 22.
Article en En | MEDLINE | ID: mdl-38634812
ABSTRACT
We present m6ACali, a novel machine-learning framework aimed at enhancing the accuracy of N6-methyladenosine (m6A) epitranscriptome profiling by reducing the impact of non-specific antibody enrichment in MeRIP-Seq. The calibration model serves as a genomic feature-based classifier that refines the identification of m6A sites, distinguishing those genuinely present from those that can be detected in in-vitro transcribed (IVT) control experiments. We find that m6ACali effectively identifies non-specific binding peaks reported by exomePeak2 and MACS2 in novel MeRIP-Seq datasets without the need for paired IVT controls. The model interpretation revealed that off-target antibody binding sites commonly occur at short exons and short mRNAs, originating from high read coverage regions that share the motif sequence with true m6A sites. We also reveal that the ML strategy can efficiently adjust differentially methylated peaks and other antibody-dependent, base-resolution m6A detection techniques. As a result, m6ACali offers a promising method for the universal enhancement of m6A profiles generated by MeRIP-Seq experiments, elevating the benchmark for omics-level m6A data integration.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Adenosina / Análisis de Secuencia de ARN / Aprendizaje Automático Límite: Humans Idioma: En Revista: Nucleic Acids Res Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Adenosina / Análisis de Secuencia de ARN / Aprendizaje Automático Límite: Humans Idioma: En Revista: Nucleic Acids Res Año: 2024 Tipo del documento: Article País de afiliación: China