A novel chitosan/cellulose phosphonate composite hydrogel for ultrafast and efficient removal of Pb(II) and Cu(II) from wastewater.
Carbohydr Polym
; 336: 122104, 2024 Jul 15.
Article
en En
| MEDLINE
| ID: mdl-38670774
ABSTRACT
Developing green and high-performance adsorbents to separate heavy metals from wastewater is a challenging task. Biomass hydrogel has the advantages of low cost, renewability, and biodegradability, but it has the problem of low adsorption efficiency. Herein, a novel chitosan/cellulose phosphonate composite hydrogel(CS/MCCP) is fabricated by two steps of reactions including the Phosphorylation reaction and the Mannich reaction. As an excellent chelating group, the phosphonate group greatly enhances the adsorption efficiency of the biomass hydrogel. The CS/MCCP shows ultrafast adsorption rate and excellent adsorption capacity for Pb(II) and Cu(II). The saturated adsorption capacity of Pb(II) and Cu(II) is 211.42 and 74.29 mg·g-1, respectively. The adsorption equilibration time is only 10 min. The adsorption performance of the CS/MCCP is superior to that of the reported cellulose/chitosan hydrogels. Besides, an in-depth analysis of the adsorption mechanism is conducted using X-ray photoelectron spectroscopy(XPS) combined with Density Functional Theory(DFT) calculation. The results reveal that the adsorption mechanism is electrostatic attraction and surface complexation, and there is a synergistic coordination between the phosphonate groups and the amino groups.
Texto completo:
1
Bases de datos:
MEDLINE
Idioma:
En
Revista:
Carbohydr Polym
Año:
2024
Tipo del documento:
Article