Your browser doesn't support javascript.
loading
A Deep Learning Framework for Analysis of the Eustachian Tube and the Internal Carotid Artery.
Amanian, Ameen; Jain, Aseem; Xiao, Yuliang; Kim, Chanha; Ding, Andy S; Sahu, Manish; Taylor, Russell; Unberath, Mathias; Ward, Bryan K; Galaiya, Deepa; Ishii, Masaru; Creighton, Francis X.
Afiliación
  • Amanian A; Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.
  • Jain A; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
  • Xiao Y; Department of Otolaryngology-Head and Neck Surgery, University of British Colombia, Vancouver, British Colombia, Canada.
  • Kim C; Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.
  • Ding AS; Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati, Cincinnati, Ohio, USA.
  • Sahu M; Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA.
  • Taylor R; Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA.
  • Unberath M; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
  • Ward BK; Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA.
  • Galaiya D; Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA.
  • Ishii M; Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA.
  • Creighton FX; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Otolaryngol Head Neck Surg ; 171(3): 731-739, 2024 Sep.
Article en En | MEDLINE | ID: mdl-38686594
ABSTRACT

OBJECTIVE:

Obtaining automated, objective 3-dimensional (3D) models of the Eustachian tube (ET) and the internal carotid artery (ICA) from computed tomography (CT) scans could provide useful navigational and diagnostic information for ET pathologies and interventions. We aim to develop a deep learning (DL) pipeline to automatically segment the ET and ICA and use these segmentations to compute distances between these structures. STUDY

DESIGN:

Retrospective cohort.

SETTING:

Tertiary referral center.

METHODS:

From a database of 30 CT scans, 60 ET and ICA pairs were manually segmented and used to train an nnU-Net model, a DL segmentation framework. These segmentations were also used to develop a quantitative tool to capture the magnitude and location of the minimum distance point (MDP) between ET and ICA. Performance metrics for the nnU-Net automated segmentations were calculated via the average Hausdorff distance (AHD) and dice similarity coefficient (DSC).

RESULTS:

The AHD for the ET and ICA were 0.922 and 0.246 mm, respectively. Similarly, the DSC values for the ET and ICA were 0.578 and 0.884. The mean MDP from ET to ICA in the cartilaginous region was 2.6 mm (0.7-5.3 mm) and was located on average 1.9 mm caudal from the bony cartilaginous junction.

CONCLUSION:

This study describes the first end-to-end DL pipeline for automated ET and ICA segmentation and analyzes distances between these structures. In addition to helping to ensure the safe selection of patients for ET dilation, this method can facilitate large-scale studies exploring the relationship between ET pathologies and the 3D shape of the ET.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Arteria Carótida Interna / Tomografía Computarizada por Rayos X / Imagenología Tridimensional / Trompa Auditiva / Aprendizaje Profundo Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Otolaryngol Head Neck Surg Asunto de la revista: OTORRINOLARINGOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Arteria Carótida Interna / Tomografía Computarizada por Rayos X / Imagenología Tridimensional / Trompa Auditiva / Aprendizaje Profundo Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Otolaryngol Head Neck Surg Asunto de la revista: OTORRINOLARINGOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos