Your browser doesn't support javascript.
loading
Long-Chain Lipids Facilitate Insertion of Large Nanoparticles into Membranes of Small Unilamellar Vesicles.
Marzouq, Adan; Morgenstein, Lion; Huang-Zhu, Carlos A; Yudovich, Shimon; Atkins, Ayelet; Grupi, Asaf; Van Lehn, Reid C; Weiss, Shimon.
Afiliación
  • Marzouq A; Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel.
  • Morgenstein L; Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
  • Huang-Zhu CA; Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
  • Yudovich S; Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel.
  • Atkins A; Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
  • Grupi A; Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison Wisconsin 53706, United States.
  • Van Lehn RC; Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
  • Weiss S; Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel.
Langmuir ; 40(20): 10477-10485, 2024 May 21.
Article en En | MEDLINE | ID: mdl-38710504
ABSTRACT
Insertion of hydrophobic nanoparticles into phospholipid bilayers is limited to small particles that can incorporate into a hydrophobic membrane core between two lipid leaflets. Incorporation of nanoparticles above this size limit requires the development of challenging surface engineering methodologies. In principle, increasing the long-chain lipid component in the lipid mixture should facilitate incorporation of larger nanoparticles. Here, we explore the effect of incorporating very long phospholipids (C241) into small unilamellar vesicles on the membrane insertion efficiency of hydrophobic nanoparticles that are 5-11 nm in diameter. To this end, we improve an existing vesicle preparation protocol and utilized cryogenic electron microscopy imaging to examine the mode of interaction and evaluate the insertion efficiency of membrane-inserted nanoparticles. We also perform classical coarse-grained molecular dynamics simulations to identify changes in lipid membrane structural properties that may increase insertion efficiency. Our results indicate that long-chain lipids increase the insertion efficiency by preferentially accumulating near membrane-inserted nanoparticles to reduce the thermodynamically unfavorable disruption of the membrane.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Liposomas Unilamelares / Nanopartículas Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Israel

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Liposomas Unilamelares / Nanopartículas Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Israel