Your browser doesn't support javascript.
loading
Phthalate alternatives and their monoesters in indoor dust from several regions, China and implications for human exposure.
Li, Ankang; Tao, Le; Zhu, Qingqing; Hu, Ligang; Liao, Chunyang; Jiang, Guibin.
Afiliación
  • Li A; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; College of Resources and Environment, U
  • Tao L; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Zhu Q; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Hu L; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; Hubei Key Laboratory of Environmental a
  • Liao C; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; Hubei Key Laboratory of Environmental a
  • Jiang G; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; College of Resources and Environment, U
Environ Res ; 252(Pt 4): 119077, 2024 Jul 01.
Article en En | MEDLINE | ID: mdl-38714222
ABSTRACT
Household products, in response to regulations, increasingly incorporate phthalate (PAE) alternatives instead of traditional PAEs. However, limited information exists regarding the fate and exposure risk of these PAE alternatives and their monoesters in indoor environments. The contamination levels of PAE alternatives and their monoesters in indoor dust might vary across regions due to climate, population density, industrial activities, and interior decoration practices. By analyzing indoor dust samples from six geographical regions across China, this study aims to shed light on concentrations, profiles, and human exposure to 12 PAE alternatives and 9 their monoesters. Bis(2-ethylhexyl) benzene-1,4-dicarboxylate (DEHTP), tributyl 2-acetyloxypropane-1,2,3-tricarboxylate (ATBC), and tris(2-ethylhexyl) benzene-1,2,4-tricarboxylate (TOTM) were the main PAE alternatives in dust across all regions. The total concentrations of 12 PAE alternatives ranged from 0.125 to 4160 µg/g in indoor dust. High molecular weight PAE alternatives had significantly correlated concentrations (p < 0.05) based on Spearman analysis, suggesting their co-use in heat-resistant plastic products. A collective of nine monoesters were identified in most samples, with total concentrations ranging from 0.048 to 29.6 µg/g. The median concentrations of PAE alternatives were highest in North China (66.8 µg/g), while those of monoesters were highest in Southwest China (6.93 µg/g). A significant correlation (p < 0.05) between the concentrations of DEHTP and its monoester suggested that degradation could be a potential source of monoesters. Although hazard quotients (HQs) have been calculated to suggest that the current exposure is unlikely to pose a significant health risk, the lack of toxicity threshold data and the existence of additional exposure pathways necessitate a further confirmation.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Ácidos Ftálicos / Contaminación del Aire Interior / Polvo Límite: Humans País/Región como asunto: Asia Idioma: En Revista: Environ Res Año: 2024 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Ácidos Ftálicos / Contaminación del Aire Interior / Polvo Límite: Humans País/Región como asunto: Asia Idioma: En Revista: Environ Res Año: 2024 Tipo del documento: Article