Your browser doesn't support javascript.
loading
Ion and Molecular Sieving With Ultrathin Polydopamine Nanomembranes.
Yu, Jiyao; Marchesi D'Alvise, Tommaso; Harley, Iain; Krysztofik, Adam; Lieberwirth, Ingo; Pula, Przemyslaw; Majewski, Pawel W; Graczykowski, Bartlomiej; Hunger, Johannes; Landfester, Katharina; Kuan, Seah Ling; Shi, Rachel; Synatschke, Christopher V; Weil, Tanja.
Afiliación
  • Yu J; Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
  • Marchesi D'Alvise T; Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
  • Harley I; Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
  • Krysztofik A; Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614, Poznan, Poland.
  • Lieberwirth I; Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
  • Pula P; Department of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093, Warsaw, Poland.
  • Majewski PW; Department of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093, Warsaw, Poland.
  • Graczykowski B; Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614, Poznan, Poland.
  • Hunger J; Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
  • Landfester K; Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
  • Kuan SL; Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
  • Shi R; Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
  • Synatschke CV; Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
  • Weil T; Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
Adv Mater ; 36(29): e2401137, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38742799
ABSTRACT
In contrast to biological cell membranes, it is still a major challenge for synthetic membranes to efficiently separate ions and small molecules due to their similar sizes in the sub-nanometer range. Inspired by biological ion channels with their unique channel wall chemistry that facilitates ion sieving by ion-channel interactions, the first free-standing, ultrathin (10-17 nm) nanomembranes composed entirely of polydopamine (PDA) are reported here as ion and molecular sieves. These nanomembranes are obtained via an easily scalable electropolymerization strategy and provide nanochannels with various amine and phenolic hydroxyl groups that offer a favorable chemical environment for ion-channel electrostatic and hydrogen bond interactions. They exhibit remarkable selectivity for monovalent ions over multivalent ions and larger species with K+/Mg2+ of ≈4.2, K+/[Fe(CN)6]3- of ≈10.3, and K+/Rhodamine B of ≈273.0 in a pressure-driven process, as well as cyclic reversible pH-responsive gating properties. Infrared spectra reveal hydrogen bond formation between hydrated multivalent ions and PDA, which prevents the transport of multivalent ions and facilitates high selectivity. Chemically rich, free-standing, and pH-responsive PDA nanomembranes with specific interaction sites are proposed as customizable high-performance sieves for a wide range of challenging separation requirements.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Alemania