Counter-Doping Effect by Trivalent Cations in Tin-Based Perovskite Solar Cells.
Adv Mater
; 36(30): e2402947, 2024 Jul.
Article
en En
| MEDLINE
| ID: mdl-38743762
ABSTRACT
Tin (Sn) -based perovskite solar cells (PSCs) normally show low open circuit voltage due to serious carrier recombination in the devices, which can be attributed to the oxidation and the resultant high p-type doping of the perovskite active layers. Considering the grand challenge to completely prohibit the oxidation of Sn-based perovskites, a feasible way to improve the device performance is to counter-dope the oxidized Sn-based perovskites by replacing Sn2+ with trivalent cations in the crystal lattice, which however is rarely reported. Here, the introduction of Sb3+, which can effectively counter-dope the oxidized perovskite layer and improve the carrier lifetime, is presented. Meanwhile, Sb3+ can passivate deep-level defects and improve carrier mobility of the perovskite layer, which are all favorable for the photovoltaic performance of the devices. Consequently, the target devices yield a relative enhancement of the power conversion efficiency (PCE) of 31.4% as well as excellent shelf-storage stability. This work provides a novel strategy to improve the performance of Sn-based PSCs, which can be developed as a universal way to compensate for the oxidation of Sn-based perovskites in optoelectronic devices.
Texto completo:
1
Bases de datos:
MEDLINE
Idioma:
En
Revista:
Adv Mater
Asunto de la revista:
BIOFISICA
/
QUIMICA
Año:
2024
Tipo del documento:
Article