Your browser doesn't support javascript.
loading
Real-time forecasting of COVID-19-related hospital strain in France using a non-Markovian mechanistic model.
Massey, Alexander; Boennec, Corentin; Restrepo-Ortiz, Claudia Ximena; Blanchet, Christophe; Alizon, Samuel; Sofonea, Mircea T.
Afiliación
  • Massey A; Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control (MIVEGEC), Université de Montpellier, National Centre for Scientific Research (CNRS), French National Research Institute for Sustainable Development (IRD), Montpellier, France.
  • Boennec C; Laboratoire Plasma et Conversion d'Energie (LAPLACE), National Centre for Scientific Research (CNRS), Institut National Polytechnique de Toulouse (Toulouse INP), Université Toulouse 3-Paul Sabatier, Toulouse, France.
  • Restrepo-Ortiz CX; MARine Biodiversity, Exploitation & Conservation (MARBEC), Université de Montpellier, National Centre for Scientific Research (CNRS), French National Institute for Ocean Science and Technology (Ifremer), French National Research Institute for Sustainable Development (IRD), Montpellier, France.
  • Blanchet C; Institut Français de Bioinformatique, IFB-core UAR 3601, National Centre for Scientific Research (CNRS), Évry, France.
  • Alizon S; Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control (MIVEGEC), Université de Montpellier, National Centre for Scientific Research (CNRS), French National Research Institute for Sustainable Development (IRD), Montpellier, France.
  • Sofonea MT; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, National Centre for Scientific Research (CNRS), National Institute of Health and Medical Research (Inserm), Université Paris Sciences et Lettres, Paris, France.
PLoS Comput Biol ; 20(5): e1012124, 2024 May.
Article en En | MEDLINE | ID: mdl-38758962
ABSTRACT
Projects such as the European Covid-19 Forecast Hub publish forecasts on the national level for new deaths, new cases, and hospital admissions, but not direct measurements of hospital strain like critical care bed occupancy at the sub-national level, which is of particular interest to health professionals for planning purposes. We present a sub-national French framework for forecasting hospital strain based on a non-Markovian compartmental model, its associated online visualisation tool and a retrospective evaluation of the real-time forecasts it provided from January to December 2021 by comparing to three baselines derived from standard statistical forecasting methods (a naive model, auto-regression, and an ensemble of exponential smoothing and ARIMA). In terms of median absolute error for forecasting critical care unit occupancy at the two-week horizon, our model only outperformed the naive baseline for 4 out of 14 geographical units and underperformed compared to the ensemble baseline for 5 of them at the 90% confidence level (n = 38). However, for the same level at the 4 week horizon, our model was never statistically outperformed for any unit despite outperforming the baselines 10 times spanning 7 out of 14 geographical units. This implies modest forecasting utility for longer horizons which may justify the application of non-Markovian compartmental models in the context of hospital-strain surveillance for future pandemics.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Predicción / SARS-CoV-2 / COVID-19 Límite: Humans País/Región como asunto: Europa Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Predicción / SARS-CoV-2 / COVID-19 Límite: Humans País/Región como asunto: Europa Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Francia