DFT Calculations Rationalize Unconventional Regioselectivity in PdII-Catalyzed Defluorinative Alkylation of gem-Difluorocyclopropanes with Hydrazones.
J Org Chem
; 89(11): 7429-7436, 2024 Jun 07.
Article
en En
| MEDLINE
| ID: mdl-38766868
ABSTRACT
Density functional theory (DFT) calculations have been conducted to gain insight into the unique formation of the branched alkylation product in the PdII-catalyzed defluorinative alkylation of gem-difluorocyclopropanes with hydrazones. The reaction is established to occur in sequence through oxidative addition, ß-F elimination, η1-η3 isomerization, transmetalation, η3-η1 isomerization, 3,3'-reductive elimination, deprotonation/N2 extrusion, and proton abstraction. The rate-determining step of the reaction is identified as the ß-F elimination, featuring an energy barrier of 28.6 kcal/mol. The 3,3'-reductive elimination transition states are the regioselectivity-determining transition states. The favorable noncovalent π-π interaction between the naphthyl group of gem-difluorocyclopropane and the phenyl group of hydrazone is found to be mainly responsible for the observed regioselectivity.
Texto completo:
1
Bases de datos:
MEDLINE
Idioma:
En
Revista:
J Org Chem
Año:
2024
Tipo del documento:
Article