Your browser doesn't support javascript.
loading
Artificial intelligence-based classification of echocardiographic views.
Naser, Jwan A; Lee, Eunjung; Pislaru, Sorin V; Tsaban, Gal; Malins, Jeffrey G; Jackson, John I; Anisuzzaman, D M; Rostami, Behrouz; Lopez-Jimenez, Francisco; Friedman, Paul A; Kane, Garvan C; Pellikka, Patricia A; Attia, Zachi I.
Afiliación
  • Naser JA; Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
  • Lee E; Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
  • Pislaru SV; Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
  • Tsaban G; Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
  • Malins JG; Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
  • Jackson JI; Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
  • Anisuzzaman DM; Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
  • Rostami B; Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
  • Lopez-Jimenez F; Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
  • Friedman PA; Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
  • Kane GC; Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
  • Pellikka PA; Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
  • Attia ZI; Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
Eur Heart J Digit Health ; 5(3): 260-269, 2024 May.
Article en En | MEDLINE | ID: mdl-38774376
ABSTRACT

Aims:

Augmenting echocardiography with artificial intelligence would allow for automated assessment of routine parameters and identification of disease patterns not easily recognized otherwise. View classification is an essential first step before deep learning can be applied to the echocardiogram. Methods and

results:

We trained two- and three-dimensional convolutional neural networks (CNNs) using transthoracic echocardiographic (TTE) studies obtained from 909 patients to classify nine view categories (10 269 videos). Transthoracic echocardiographic studies from 229 patients were used in internal validation (2582 videos). Convolutional neural networks were tested on 100 patients with comprehensive TTE studies (where the two examples chosen by CNNs as most likely to represent a view were evaluated) and 408 patients with five view categories obtained via point-of-care ultrasound (POCUS). The overall accuracy of the two-dimensional CNN was 96.8%, and the averaged area under the curve (AUC) was 0.997 on the comprehensive TTE testing set; these numbers were 98.4% and 0.998, respectively, on the POCUS set. For the three-dimensional CNN, the accuracy and AUC were 96.3% and 0.998 for full TTE studies and 95.0% and 0.996 on POCUS videos, respectively. The positive predictive value, which defined correctly identified predicted views, was higher with two-dimensional rather than three-dimensional networks, exceeding 93% in apical, short-axis aortic valve, and parasternal long-axis left ventricle views.

Conclusion:

An automated view classifier utilizing CNNs was able to classify cardiac views obtained using TTE and POCUS with high accuracy. The view classifier will facilitate the application of deep learning to echocardiography.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Eur Heart J Digit Health Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Eur Heart J Digit Health Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos