Lithium prevents glucocorticoid-induced osteonecrosis of the femoral head by regulating autophagy.
J Cell Mol Med
; 28(10): e18385, 2024 May.
Article
en En
| MEDLINE
| ID: mdl-38801405
ABSTRACT
Autophagy may play an important role in the occurrence and development of glucocorticoid-induced osteonecrosis of the femoral head (GC-ONFH). Lithium is a classical autophagy regulator, and lithium can also activate osteogenic pathways, making it a highly promising therapeutic agent for GC-ONFH. We aimed to evaluate the potential therapeutic effect of lithium on GC-ONFH. For in vitro experiments, primary osteoblasts of rats were used for investigating the underlying mechanism of lithium's protective effect on GC-induced autophagy levels and osteogenic activity dysfunction. For in vivo experiments, a rat model of GC-ONFH was used for evaluating the therapeutic effect of oral lithium on GC-ONFH and underlying mechanism. Findings demonstrated that GC over-activated the autophagy of osteoblasts and reduced their osteogenic activity. Lithium reduced the over-activated autophagy of GC-treated osteoblasts through PI3K/AKT/mTOR signalling pathway and increased their osteogenic activity. Oral lithium reduced the osteonecrosis rates in a rat model of GC-ONFH, and restrained the increased expression of autophagy related proteins in bone tissues through PI3K/AKT/mTOR signalling pathway. In conclusion, lithium can restrain over-activated autophagy by activating PI3K/AKT/mTOR signalling pathway and up-regulate the expression of genes for bone formation both in GC induced osteoblasts and in a rat model of GC-ONFH. Lithium may be a promising therapeutic agent for GC-ONFH. However, the role of autophagy in the pathogenesis of GC-ONFH remains controversial. Studies are still needed to further explore the role of autophagy in the pathogenesis of GC-ONFH, and the efficacy of lithium in the treatment of GC-ONFH and its underlying mechanisms.
Palabras clave
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Osteoblastos
/
Autofagia
/
Transducción de Señal
/
Necrosis de la Cabeza Femoral
/
Serina-Treonina Quinasas TOR
/
Glucocorticoides
/
Litio
Límite:
Animals
Idioma:
En
Revista:
J Cell Mol Med
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2024
Tipo del documento:
Article
País de afiliación:
China