Your browser doesn't support javascript.
loading
The interplay of soil physicochemical properties, methanogenic diversity, and abundance governs methane production potential in paddy soil subjected to multi-decadal straw incorporation.
Yang, Yuling; Shen, Lidong; Agathokleous, Evgenios; Wang, Shuwei; Jin, Yuhan; Bai, Yanan; Yang, Wangting; Ren, Bingjie; Jin, Jinghao; Zhao, Xu.
Afiliación
  • Yang Y; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
  • Shen L; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China. Electronic address: shenld@nuist.edu.cn.
  • Agathokleous E; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
  • Wang S; State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
  • Jin Y; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
  • Bai Y; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
  • Yang W; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
  • Ren B; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
  • Jin J; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
  • Zhao X; State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China. Electronic address: zhaoxu@issas.ac.cn.
Environ Res ; 256: 119246, 2024 Sep 01.
Article en En | MEDLINE | ID: mdl-38810824
ABSTRACT
Straw incorporation holds significant promise for enhancing soil fertility and mitigating air pollution stemming from straw burning. However, this practice concurrently elevates the production and emission of methane (CH4) from paddy ecosystems. Despite its environmental impact, the precise mechanisms behind the heightened CH4 production resulting from long-term straw incorporation remain elusive. In a 32-year field experiment featuring three fertilization treatments (CFS-chemical fertilizer with wheat straw, CF-chemical fertilizer, and CK-unamended), we investigated the impact of abiotic (soil physicochemical properties) and biotic (methanogenic abundance, diversity, and community composition) factors on CH4 production in paddy fields. Results revealed a significantly higher CH4 production potential under CFS treatment compared to CF and CK treatments. The partial least squares path model revealed that soil physicochemical properties (path coefficient = 0.61), methanogenic diversity (path coefficient = -0.43), and methanogenic abundance (path coefficient = 0.29) collectively determined CH4 production potential, explaining 77% of the variance. Enhanced soil organic carbon content and water content, resulting from straw incorporation, emerged as pivotal factors positively correlated with CH4 production potential. Under CFS treatment, lower Shannon index of methanogens, compared to CF and CK treatments, was attributed to increased Methanosarcina. Notably, the Shannon index and relative abundance of Methanosarcina exhibited negative and positive correlations with CH4 production potential, respectively. Methanogenic abundance, bolstered by straw incorporation, significantly amplified overall potential. This comprehensive analysis underscores the joint influence of abiotic and biotic factors in regulating CH4 production potential during multi-decadal straw incorporation.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Suelo / Microbiología del Suelo / Metano Idioma: En Revista: Environ Res Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Suelo / Microbiología del Suelo / Metano Idioma: En Revista: Environ Res Año: 2024 Tipo del documento: Article País de afiliación: China