Your browser doesn't support javascript.
loading
In Situ Electrochemical Polymerization of Cathode Electrolyte Interphase Enabling High-Performance Lithium Metal Batteries.
Sun, Shipeng; Yu, Jiangtao; Ma, Xinyu; Fang, Pengda; Yang, Mingchen; Yang, Jinhua; Wu, Mingzhu; Hu, Yin; Yan, Feng.
Afiliación
  • Sun S; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Yu J; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Ma X; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Fang P; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Yang M; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Yang J; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Wu M; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Hu Y; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Yan F; Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
Small ; : e2403145, 2024 Jun 17.
Article en En | MEDLINE | ID: mdl-38881358
ABSTRACT
Lithium metal batteries (LMBs) with high-voltage nickel-rich cathodes show great potential as energy storage devices due to their exceptional capacity and power density. However, the detrimental parasitic side reactions at the cathode electrolyte interface result in rapid capacity decay. Herein, a polymerizable electrolyte additive, pyrrole-1-propionic acid (PA), which can be in situ electrochemically polymerized on the cathode surface and involved in forming cathode electrolyte interphase (CEI) film during cycling is proposed. The formed CEI film prevents the formation of microcracks in LiNi0.8Co0.1Mn0.1O2 (NCM811) secondary particles and mitigates parasitic reactions. Additionally, the COO- anions of PA promote the acceleration of Li+ transport from cathode particles and increase charging rates. The Li||NCM811 batteries with PA in the electrolyte exhibit a high capacity retention of 83.83% after 200 cycles at 4.3 V, and maintain 80.88% capacity after 150 cycles at 4.6 V. This work provides an effective strategy for enhancing interface stability of high-voltage nickel-rich cathodes by forming stable CEI film.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China