Your browser doesn't support javascript.
loading
The role of artificial intelligence and data science in nanoparticles development: a review.
Silveira, Rodrigo Fonseca; Lima, Ana Luiza; Gross, Idejan Padilha; Gelfuso, Guilherme Martins; Gratieri, Tais; Cunha-Filho, Marcilio.
Afiliación
  • Silveira RF; Laboratory of Food, Drugs, & Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil.
  • Lima AL; Laboratory of Food, Drugs, & Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil.
  • Gross IP; Laboratory of Food, Drugs, & Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil.
  • Gelfuso GM; Laboratory of Food, Drugs, & Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil.
  • Gratieri T; Laboratory of Food, Drugs, & Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil.
  • Cunha-Filho M; Laboratory of Food, Drugs, & Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil.
Nanomedicine (Lond) ; 19(14): 1271-1283, 2024.
Article en En | MEDLINE | ID: mdl-38905147
ABSTRACT
Artificial intelligence has revolutionized many sectors with unparalleled predictive capabilities supported by machine learning (ML). So far, this tool has not been able to provide the same level of development in pharmaceutical nanotechnology. This review discusses the current data science methodologies related to polymeric drug-loaded nanoparticle production from an innovative multidisciplinary perspective while considering the strictest data science practices. Several methodological and data interpretation flaws were identified by analyzing the few qualified ML studies. Most issues lie in following appropriate analysis steps, such as cross-validation, balancing data, or testing alternative models. Thus, better-planned studies following the recommended data science analysis steps along with adequate numbers of experiments would change the current landscape, allowing the exploration of the full potential of ML.
[Box see text].
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Inteligencia Artificial / Nanopartículas / Aprendizaje Automático / Ciencia de los Datos Límite: Humans Idioma: En Revista: Nanomedicine (Lond) Año: 2024 Tipo del documento: Article País de afiliación: Brasil

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Inteligencia Artificial / Nanopartículas / Aprendizaje Automático / Ciencia de los Datos Límite: Humans Idioma: En Revista: Nanomedicine (Lond) Año: 2024 Tipo del documento: Article País de afiliación: Brasil