Your browser doesn't support javascript.
loading
Brain and serum lipidomic profiles implicate Lands cycle acyl chain remodeling association with APOEε4 and mild cognitive impairment.
Mares, Jason; Costa, Ana Paula; Dartora, William J; Wartchow, Krista M; Lazarian, Artur; Bennett, David A; Nuriel, Tal; Menon, Vilas; McIntire, Laura Beth J.
Afiliación
  • Mares J; Center for Translational & Computational Neuroimmunology, Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States.
  • Costa AP; Lipidomics and Biomarker Discovery Lab, Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States.
  • Dartora WJ; Lipidomics and Biomarker Discovery Lab, Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States.
  • Wartchow KM; Lipidomics and Biomarker Discovery Lab, Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States.
  • Lazarian A; Lipidomics and Biomarker Discovery Lab, Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States.
  • Bennett DA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States.
  • Nuriel T; Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States.
  • Menon V; Center for Translational & Computational Neuroimmunology, Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States.
  • McIntire LBJ; Lipidomics and Biomarker Discovery Lab, Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States.
Front Aging Neurosci ; 16: 1419253, 2024.
Article en En | MEDLINE | ID: mdl-38938596
ABSTRACT

Introduction:

At least one-third of the identified risk alleles from Genome-Wide Association Studies (GWAS) of Alzheimer's disease (AD) are involved in lipid metabolism, lipid transport, or direct lipid binding. In fact, a common genetic variant (ε4) in a cholesterol and phospholipid transporter, Apolipoprotein E (APOEε4), is the primary genetic risk factor for late-onset AD. In addition to genetic variants, lipidomic studies have reported severe metabolic dysregulation in human autopsy brain tissue, cerebrospinal fluid, blood, and multiple mouse models of AD.

Methods:

We aimed to identify an overarching metabolic pathway in lipid metabolism by integrating analyses of lipidomics and transcriptomics from the Religious Order Study and Rush Memory Aging Project (ROSMAP) using differential analysis and network correlation analysis.

Results:

Coordinated differences in lipids were found to be dysregulated in association with both mild cognitive impairment (MCI) and APOEε4 carriers. Interestingly, these correlations were weakened when adjusting for education. Indeed, the cognitively non-impaired APOEε4 carriers have higher education levels in the ROSMAP cohort, suggesting that this lipid signature may be associated with a resilience phenotype. Network correlation analysis identified multiple differential lipids within a single module that are substrates and products in the Lands Cycle for acyl chain remodeling. In addition, our analyses identified multiple genes in the Lands Cycle acyl chain remodeling pathway, which were associated with cognitive decline independent of amyloid-ß (Aß) load and tau tangle pathologies.

Discussion:

Our studies highlight the critical differences in acyl chain remodeling in brain tissue from APOEε4 carriers and individual non-carriers with MCI. A coordinated lipid profile shift in dorsolateral prefrontal cortex from both APOEε4 carriers and MCI suggests differences in lipid metabolism occur early in disease stage and highlights lipid homeostasis as a tractable target for early disease modifying intervention.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Front Aging Neurosci Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Front Aging Neurosci Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos