Methane-Driven Perchlorate Reduction by a Microbial Consortium.
Environ Sci Technol
; 2024 Jul 22.
Article
en En
| MEDLINE
| ID: mdl-39037290
ABSTRACT
The phenomenon of methane oxidation linked to perchlorate reduction has been reported in multiple studies; yet, the underlying microbial mechanisms remain unclear. Here, we enriched suspended cultures by performing methane-driven perchlorate reduction under oxygen-limiting conditions in a membrane bioreactor (MBR). Batch test results proved that perchlorate reduction was coupled to methane oxidation, in which acetate was predicted as the potential intermediate and oxygen played an essential role in activating methane. By combining DNA-based stable isotope probing incubation and high-throughput sequencing analyses of 16S rRNA gene and functional genes (pmoA, pcrA, and narG), we found that synergistic interactions between aerobic methanotrophs (Methylococcus and Methylocystis) and perchlorate-reducing bacteria (PRB; Denitratisoma and Dechloromonas) played active roles in mediating methane-driven perchlorate reduction. This partnership was further demonstrated by coculture experiments in which the aerobic methanotroph could produce acetate to support PRB to complete perchlorate reduction. Our findings advance the understanding of the methane-driven perchlorate reduction process and have implications for similar microbial consortia linking methane and chlorine biogeochemical cycles in natural environments.
Texto completo:
1
Bases de datos:
MEDLINE
Idioma:
En
Revista:
Environ Sci Technol
Año:
2024
Tipo del documento:
Article
País de afiliación:
Australia