Your browser doesn't support javascript.
loading
GA-GBLUP: leveraging the genetic algorithm to improve the predictability of genomic selection.
Xu, Yang; Zhang, Yuxiang; Cui, Yanru; Zhou, Kai; Yu, Guangning; Yang, Wenyan; Wang, Xin; Li, Furong; Guan, Xiusheng; Zhang, Xuecai; Yang, Zefeng; Xu, Shizhong; Xu, Chenwu.
Afiliación
  • Xu Y; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China.
  • Zhang Y; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China.
  • Cui Y; College of Agronomy, Hebei Agricultural University, Baoding, Hebei 071001, China.
  • Zhou K; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China.
  • Yu G; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China.
  • Yang W; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China.
  • Wang X; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China.
  • Li F; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China.
  • Guan X; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China.
  • Zhang X; Global Maize Program, International Maize and Wheat Improvement Centre, Texcoco 56237, Mexico.
  • Yang Z; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China.
  • Xu S; Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, United States.
  • Xu C; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China.
Brief Bioinform ; 25(5)2024 Jul 25.
Article en En | MEDLINE | ID: mdl-39101500
ABSTRACT
Genomic selection (GS) has emerged as an effective technology to accelerate crop hybrid breeding by enabling early selection prior to phenotype collection. Genomic best linear unbiased prediction (GBLUP) is a robust method that has been routinely used in GS breeding programs. However, GBLUP assumes that markers contribute equally to the total genetic variance, which may not be the case. In this study, we developed a novel GS method called GA-GBLUP that leverages the genetic algorithm (GA) to select markers related to the target trait. We defined four fitness functions for optimization, including AIC, BIC, R2, and HAT, to improve the predictability and bin adjacent markers based on the principle of linkage disequilibrium to reduce model dimension. The results demonstrate that the GA-GBLUP model, equipped with R2 and HAT fitness function, produces much higher predictability than GBLUP for most traits in rice and maize datasets, particularly for traits with low heritability. Moreover, we have developed a user-friendly R package, GAGBLUP, for GS, and the package is freely available on CRAN (https//CRAN.R-project.org/package=GAGBLUP).
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Selección Genética / Algoritmos / Zea mays / Genómica Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Selección Genética / Algoritmos / Zea mays / Genómica Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: China