Your browser doesn't support javascript.
loading
Magnetically Powered Microrobotic Swarm for Integrated Mechanical/Photothermal/Photodynamic Thrombolysis.
Song, Yanzhen; Ou, Juanfeng; Miao, Jiajun; Zhang, Xiaoting; Jiang, Jiamiao; Tian, Hao; Peng, Fei; Tu, Yingfeng.
Afiliación
  • Song Y; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
  • Ou J; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
  • Miao J; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
  • Zhang X; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
  • Jiang J; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
  • Tian H; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
  • Peng F; School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
  • Tu Y; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
Small ; : e2403440, 2024 Aug 16.
Article en En | MEDLINE | ID: mdl-39149924
ABSTRACT
Current thrombolytic drugs exhibit suboptimal therapeutic outcomes and potential bleeding risks due to their limited circulation time, inadequate thrombus penetration, and off-target biodistribution. Herein, a photosensitizer-loaded, red cell membrane-encapsuled multiple magnetic nanoparticles aggregate is successfully developed for integrated mechanical/photothermal/photodynamic thrombolysis. Red cell membrane coating endows magnetic particles with prolonged blood circulation and superior biocompatibility. Under a preset rotating magnetic field (RMF), the aggregate with asymmetric magnetic distribution initiates rolling motion toward the blood clot interface, and because of magnetic dipole-dipole interactions, the aggregate tends to self-assemble into longer, flexible chain-like microrobotic swarm with powerful mechanical stir forces, thereby facilitating thrombus penetration and mechanical thrombolysis. Moreover, precise magnetic control enables targeted photosensitizer accumulation, allowing effective conversion of near-infrared (NIR) light into heat and reactive oxygen species (ROS) for thrombus phototherapy. In thrombolysis assays, the weight of thrombi is massively reduced by ≈90%. The work presents a safer and more promising combination of magnetic microrobotic technology and phototherapy for multi-modality thrombolysis.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China