Your browser doesn't support javascript.
loading
Machine learning-based identification of biomarkers and drugs in immunologically cold and hot pancreatic adenocarcinomas.
Ge, Jia; Ge, Juan; Tang, Gu; Xiong, Dejun; Zhu, Dongyan; Ding, Xiaoling; Zhou, Xiaorong; Sang, Mengmeng.
Afiliación
  • Ge J; Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, China.
  • Ge J; Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, China.
  • Tang G; Department of Respiratory Medicine, Affiliated Nantong Hospital of Shanghai University, Nantong, 226011, China.
  • Xiong D; Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, China.
  • Zhu D; Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, China.
  • Ding X; Department of Rehabilitation, the Second Affiliated Hospital of Nantong University, Nantong, 226001, China.
  • Zhou X; Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, China. Dixili@126.com.
  • Sang M; Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, China. zhouxiaorong@ntu.edu.cn.
J Transl Med ; 22(1): 775, 2024 Aug 16.
Article en En | MEDLINE | ID: mdl-39152432
ABSTRACT

BACKGROUND:

Pancreatic adenocarcinomas (PAADs) often exhibit a "cold" or immunosuppressive tumor milieu, which is associated with resistance to immune checkpoint blockade therapy; however, the underlying mechanisms are incompletely understood. Here, we aimed to improve our understanding of the molecular mechanisms occurring in the tumor microenvironment and to identify biomarkers, therapeutic targets, and potential drugs to improve PAAD treatment.

METHODS:

Patients were categorized according to immunologically hot or cold PAAD subtypes with distinct disease outcomes. Cox regression and weighted correlation network analysis were performed to construct a novel gene signature, referred to as 'Downregulated in hot tumors, Prognostic, and Immune-Related Genes' (DPIRGs), which was used to develop prognostic models for PAAD via machine learning (ML). The role of DPIRGs in PAAD was comprehensively analyzed, and biomarker genes able to distinguish PAAD immune subtypes and predict prognosis were identified by ML. The expression of biomarkers was verified using public single-cell transcriptomic and proteomic resources. Drug candidates for turning cold tumors hot and corresponding target proteins were identified via molecular docking studies.

RESULTS:

Using the DPIRG signature as input data, a combination of survival random forest and partial least squares regression Cox was selected from 137 ML combinations to construct an optimized PAAD prognostic model. The effects and molecular mechanisms of DPIRGs were investigated by analysis of genetic/epigenetic alterations, immune infiltration, pathway enrichment, and miRNA regulation. Biomarkers and potential therapeutic targets, including PLEC, TRPV1, and ITGB4, among others, were identified, and the cell type-specific expression of the biomarkers was validated. Drug candidates, including thalidomide, SB-431542, and bleomycin A2, were identified based on their ability to modulate DPIRG expression favorably.

CONCLUSIONS:

By combining multiple ML algorithms, we developed a novel prognostic model with excellent performance in PAAD cohorts. ML also proved to be powerful for identifying biomarkers and potential targets for improved PAAD patient stratification and immunotherapy.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Neoplasias Pancreáticas / Adenocarcinoma / Biomarcadores de Tumor / Regulación Neoplásica de la Expresión Génica / Aprendizaje Automático Límite: Female / Humans / Male Idioma: En Revista: J Transl Med Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Neoplasias Pancreáticas / Adenocarcinoma / Biomarcadores de Tumor / Regulación Neoplásica de la Expresión Génica / Aprendizaje Automático Límite: Female / Humans / Male Idioma: En Revista: J Transl Med Año: 2024 Tipo del documento: Article País de afiliación: China