Multiharmonic tracking using marginalized particle filters.
Annu Int Conf IEEE Eng Med Biol Soc
; 2008: 29-33, 2008.
Article
em En
| MEDLINE
| ID: mdl-19162586
Man-made and natural systems often generate signals with multi-harmonic components, and the accurate estimation of the harmonically related components of these signals is critical for various applications. The posterior distribution of frequency estimates for this class of signal is multi-model--posing a challenge for frequency tracking algorithms which may lock onto a super or sub harmonic of the fundamental frequency. We propose a multi-harmonic tracker based on a sequential Monte Carlo method (SMCM) which can account for the multi-modality of the posterior distribution to track the harmonically related components of a signal more accurately than a tracker based on local linearization. We compare the SMCM multi-harmonic tracker with the extended Kalman filter (EKF) multi-harmonic tracker by applying them to real biomedical signals including electrocardiograms (ECG) and arterial blood pressure (ABP) signals. The results clearly show the superior performance of the proposed multi-harmonic tracker over the EKF tracker.
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Oscilometria
/
Determinação da Pressão Arterial
/
Algoritmos
/
Processamento de Sinais Assistido por Computador
/
Reconhecimento Automatizado de Padrão
/
Diagnóstico por Computador
/
Eletrocardiografia
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
Annu Int Conf IEEE Eng Med Biol Soc
Ano de publicação:
2008
Tipo de documento:
Article
País de afiliação:
Estados Unidos