Your browser doesn't support javascript.
loading
RNA-Seq gene expression estimation with read mapping uncertainty.
Li, Bo; Ruotti, Victor; Stewart, Ron M; Thomson, James A; Dewey, Colin N.
Afiliação
  • Li B; Department of Computer Sciences, University of Wisconsin, Madison, WI 53706, USA.
Bioinformatics ; 26(4): 493-500, 2010 Feb 15.
Article em En | MEDLINE | ID: mdl-20022975
MOTIVATION: RNA-Seq is a promising new technology for accurately measuring gene expression levels. Expression estimation with RNA-Seq requires the mapping of relatively short sequencing reads to a reference genome or transcript set. Because reads are generally shorter than transcripts from which they are derived, a single read may map to multiple genes and isoforms, complicating expression analyses. Previous computational methods either discard reads that map to multiple locations or allocate them to genes heuristically. RESULTS: We present a generative statistical model and associated inference methods that handle read mapping uncertainty in a principled manner. Through simulations parameterized by real RNA-Seq data, we show that our method is more accurate than previous methods. Our improved accuracy is the result of handling read mapping uncertainty with a statistical model and the estimation of gene expression levels as the sum of isoform expression levels. Unlike previous methods, our method is capable of modeling non-uniform read distributions. Simulations with our method indicate that a read length of 20-25 bases is optimal for gene-level expression estimation from mouse and maize RNA-Seq data when sequencing throughput is fixed.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Software / Expressão Gênica / Análise de Sequência de RNA Limite: Animals Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Software / Expressão Gênica / Análise de Sequência de RNA Limite: Animals Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Estados Unidos