Sphingosine 1-phosphate signaling is involved in skeletal muscle regeneration.
Am J Physiol Cell Physiol
; 298(3): C550-8, 2010 Mar.
Article
em En
| MEDLINE
| ID: mdl-20042733
Sphingosine 1-phosphate (S1P) is a bioactive lipid known to control cell growth that was recently shown to act as a trophic factor for skeletal muscle, reducing the progress of denervation atrophy. The aim of this work was to investigate whether S1P is involved in skeletal muscle fiber recovery (regeneration) after myotoxic injury induced by bupivacaine. The postnatal ability of skeletal muscle to grow and regenerate is dependent on resident stem cells called satellite cells. Immunofluorescence analysis demonstrated that S1P-specific receptors S1P(1) and S1P(3) are expressed by quiescent satellite cells. Soleus muscles undergoing regeneration following injury induced by intramuscular injection of bupivacaine exhibited enhanced expression of S1P(1) receptor, while S1P(3) expression progressively decreased to adult levels. S1P(2) receptor was absent in quiescent cells but was transiently expressed in the early regenerating phases only. Administration of S1P (50 microM) at the moment of myotoxic injury caused a significant increase of the mean cross-sectional area of regenerating fibers in both rat and mouse. In separate experiments designed to test the trophic effects of S1P, neutralization of endogenous circulating S1P by intraperitoneal administration of anti-S1P antibody attenuated fiber growth. Use of selective modulators of S1P receptors indicated that S1P(1) receptor negatively and S1P(3) receptor positively modulate the early phases of regeneration, whereas S1P(2) receptor appears to be less important. The present results show that S1P signaling participates in the regenerative processes of skeletal muscle.
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Regeneração
/
Esfingosina
/
Lisofosfolipídeos
/
Transdução de Sinais
/
Músculo Esquelético
/
Desenvolvimento Muscular
/
Células Satélites de Músculo Esquelético
/
Doenças Musculares
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
Am J Physiol Cell Physiol
Assunto da revista:
FISIOLOGIA
Ano de publicação:
2010
Tipo de documento:
Article
País de afiliação:
Itália