Your browser doesn't support javascript.
loading
Mena deficiency delays tumor progression and decreases metastasis in polyoma middle-T transgenic mouse mammary tumors.
Roussos, Evanthia T; Wang, Yarong; Wyckoff, Jeffrey B; Sellers, Rani S; Wang, Weigang; Li, Jiufeng; Pollard, Jeffrey W; Gertler, Frank B; Condeelis, John S.
Afiliação
  • Roussos ET; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. evanthia.roussos@med.einstein.yu.edu
Breast Cancer Res ; 12(6): R101, 2010.
Article em En | MEDLINE | ID: mdl-21108830
INTRODUCTION: The actin binding protein Mammalian enabled (Mena), has been implicated in the metastatic progression of solid tumors in humans. Mena expression level in primary tumors is correlated with metastasis in breast, cervical, colorectal and pancreatic cancers. Cells expressing high Mena levels are part of the tumor microenvironment for metastasis (TMEM), an anatomical structure that is predictive for risk of breast cancer metastasis. Previously we have shown that forced expression of Mena adenocarcinoma cells enhances invasion and metastasis in xenograft mice. Whether Mena is required for tumor progression is still unknown. Here we report the effects of Mena deficiency on tumor progression, metastasis and on normal mammary gland development. METHODS: To investigate the role of Mena in tumor progression and metastasis, Mena deficient mice were intercrossed with mice carrying a transgene expressing the polyoma middle T oncoprotein, driven by the mouse mammary tumor virus. The progeny were investigated for the effects of Mena deficiency on tumor progression via staging of primary mammary tumors and by evaluation of morbidity. Stages of metastatic progression were investigated using an in vivo invasion assay, intravital multiphoton microscopy, circulating tumor cell burden, and lung metastases. Mammary gland development was studied in whole mount mammary glands of wild type and Mena deficient mice. RESULTS: Mena deficiency decreased morbidity and metastatic dissemination. Loss of Mena increased mammary tumor latency but had no affect on mammary tumor burden or histologic progression to carcinoma. Elimination of Mena also significantly decreased epidermal growth factor (EGF) induced in vivo invasion, in vivo motility, intravasation and metastasis. Non-tumor bearing mice deficient for Mena also showed defects in mammary gland terminal end bud formation and branching. CONCLUSIONS: Deficiency of Mena decreases metastasis by slowing tumor progression and reducing tumor cell invasion and intravasation. Mena deficiency during development causes defects in invasive processes involved in mammary gland development. These findings suggest that functional intervention targeting Mena in breast cancer patients may provide a valuable treatment option to delay tumor progression and decrease invasion and metastatic spread leading to an improved prognostic outcome.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Proteínas do Citoesqueleto / Neoplasias Mamárias Experimentais Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Breast Cancer Res Assunto da revista: NEOPLASIAS Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Proteínas do Citoesqueleto / Neoplasias Mamárias Experimentais Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Breast Cancer Res Assunto da revista: NEOPLASIAS Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Estados Unidos