Directed evolution of a temperature-, peroxide- and alkaline pH-tolerant versatile peroxidase.
Biochem J
; 441(1): 487-98, 2012 Jan 01.
Article
em En
| MEDLINE
| ID: mdl-21980920
The VPs (versatile peroxidases) secreted by white-rot fungi are involved in the natural decay of lignin. In the present study, a fusion gene containing the VP from Pleurotus eryngii was subjected to six rounds of directed evolution, achieving a level of secretion in Saccharomyces cerevisiae (21 mg/l) as yet unseen for any ligninolytic peroxidase. The evolved variant for expression harboured four mutations and increased its total VP activity 129-fold. The signal leader processing by the STE13 protease at the Golgi compartment changed as a consequence of overexpression, retaining the additional N-terminal sequence Glu-Ala-Glu-Ala that enhanced secretion. The engineered N-terminally truncated variant displayed similar biochemical properties to those of the non-truncated counterpart in terms of kinetics, stability and spectroscopic features. Additional cycles of evolution raised the T50 8°C and significantly increased the enzyme's stability at alkaline pHs. In addition, the Km for H2O2 was enhanced up to 15-fold while the catalytic efficiency was maintained, and there was an improvement in peroxide stability (with half-lives for H2O2 of 43 min at a H2O2/enzyme molar ratio of 4000:1). Overall, the directed evolution approach described provides a set of strategies for selecting VPs with improvements in secretion, activity and stability.
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Peroxidases
/
Saccharomyces cerevisiae
/
Temperatura
/
Proteínas Fúngicas
/
Pleurotus
/
Peróxido de Hidrogênio
Idioma:
En
Revista:
Biochem J
Ano de publicação:
2012
Tipo de documento:
Article
País de afiliação:
Espanha