Epigenetic regulation of miR-17~92 contributes to the pathogenesis of pulmonary fibrosis.
Am J Respir Crit Care Med
; 187(4): 397-405, 2013 Feb 15.
Article
em En
| MEDLINE
| ID: mdl-23306545
RATIONALE: Idiopathic pulmonary fibrosis (IPF) is a disease of progressive lung fibrosis with a high mortality rate. In organ repair and remodeling, epigenetic events are important. MicroRNAs (miRNAs) regulate gene expression post-transcriptionally and can target epigenetic molecules important in DNA methylation. The miR-17~92 miRNA cluster is critical for lung development and lung epithelial cell homeostasis and is predicted to target fibrotic genes and DNA methyltransferase (DNMT)-1 expression. OBJECTIVES: We investigated the miR-17~92 cluster expression and its role in regulating DNA methylation events in IPF lung tissue. METHODS: Expression and DNA methylation patterns of miR-17~92 were determined in human IPF lung tissue and fibroblasts and fibrotic mouse lung tissue. The relationship between the miR-17~92 cluster and DNMT-1 expression was examined in vitro. Using a murine model of pulmonary fibrosis, we examined the therapeutic potential of the demethylating agent, 5'-aza-2'-deoxycytidine. MEASUREMENTS AND MAIN RESULTS: Compared with control samples, miR-17~92 expression was reduced in lung biopsies and lung fibroblasts from patients with IPF, whereas DNMT-1 expression and methylation of the miR-17~92 promoter was increased. Several miRNAs from the miR-17~92 cluster targeted DNMT-1 expression resulting in a negative feedback loop. Similarly, miR-17~92 expression was reduced in the lungs of bleomycin-treated mice. Treatment with 5'-aza-2'-deoxycytidine in a murine bleomycin-induced pulmonary fibrosis model reduced fibrotic gene and DNMT-1 expression, enhanced miR-17~92 cluster expression, and attenuated pulmonary fibrosis. CONCLUSIONS: This study provides insight into the pathobiology of IPF and identifies a novel epigenetic feedback loop between miR-17~92 and DNMT-1 in lung fibrosis.
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
MicroRNAs
/
Fibrose Pulmonar Idiopática
Tipo de estudo:
Etiology_studies
/
Prognostic_studies
Limite:
Animals
/
Humans
Idioma:
En
Revista:
Am J Respir Crit Care Med
Assunto da revista:
TERAPIA INTENSIVA
Ano de publicação:
2013
Tipo de documento:
Article
País de afiliação:
Estados Unidos