Your browser doesn't support javascript.
loading
PRISM offers a comprehensive genomic approach to transcription factor function prediction.
Wenger, Aaron M; Clarke, Shoa L; Guturu, Harendra; Chen, Jenny; Schaar, Bruce T; McLean, Cory Y; Bejerano, Gill.
Afiliação
  • Wenger AM; Department of Computer Science, Stanford University, Stanford, California 94305, USA.
Genome Res ; 23(5): 889-904, 2013 May.
Article em En | MEDLINE | ID: mdl-23382538
The human genome encodes 1500-2000 different transcription factors (TFs). ChIP-seq is revealing the global binding profiles of a fraction of TFs in a fraction of their biological contexts. These data show that the majority of TFs bind directly next to a large number of context-relevant target genes, that most binding is distal, and that binding is context specific. Because of the effort and cost involved, ChIP-seq is seldom used in search of novel TF function. Such exploration is instead done using expression perturbation and genetic screens. Here we propose a comprehensive computational framework for transcription factor function prediction. We curate 332 high-quality nonredundant TF binding motifs that represent all major DNA binding domains, and improve cross-species conserved binding site prediction to obtain 3.3 million conserved, mostly distal, binding site predictions. We combine these with 2.4 million facts about all human and mouse gene functions, in a novel statistical framework, in search of enrichments of particular motifs next to groups of target genes of particular functions. Rigorous parameter tuning and a harsh null are used to minimize false positives. Our novel PRISM (predicting regulatory information from single motifs) approach obtains 2543 TF function predictions in a large variety of contexts, at a false discovery rate of 16%. The predictions are highly enriched for validated TF roles, and 45 of 67 (67%) tested binding site regions in five different contexts act as enhancers in functionally matched cells.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Fatores de Transcrição / Sítios de Ligação / Software / Biologia Computacional Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Genome Res Assunto da revista: BIOLOGIA MOLECULAR / GENETICA Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Fatores de Transcrição / Sítios de Ligação / Software / Biologia Computacional Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Genome Res Assunto da revista: BIOLOGIA MOLECULAR / GENETICA Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Estados Unidos