Effects of substituents and substitution positions on alkaline stability of imidazolium cations and their corresponding anion-exchange membranes.
ACS Appl Mater Interfaces
; 6(6): 4346-55, 2014 Mar 26.
Article
em En
| MEDLINE
| ID: mdl-24568272
Imidazolium cations with butyl groups at various substitution positions (N1-, C2-, and N3-), 1-butyl-2,3-dimethylimidazolium ([N1-BDMIm](+)), 2-butyl-1,3-dimethylimidazolium ([C2-BDMIm](+)), and 3-butyl-1,2-dimethylimidazolium ([N3-BDMIm](+)), were synthesized. Quantitative (1)H NMR spectra and density functional theory calculation were applied to investigate the chemical stability of the imidazolium cations in alkaline solutions. The results suggested that the alkaline stability of the imidazolium cations was drastically affected by the C2-substitution groups. The alkaline stability of imidazolium cations with various substitution groups at the C2-position, including 2-ethyl-1-butyl-3-methylimidazolium ([C2-EBMIm](+)), 1,2-dibutyl-3-methylimidazolium ([C2-BBMIm](+)), and 2-hydroxymethyl-1-butyl-3-methylimidazolium ([C2-HMBMIm](+)), was further studied. The butyl group substituted imidazolium cation ([C2-BBMIm](+)) exhibited the highest alkaline stability at the elevated temperatures. The synthesized anion-exchange membranes based on the [C2-BBMIm](+) cation showed promising alkaline stability. These observations should pave the way to the practical application of imidazolium-based anion exchange membrane fuel cells.
Texto completo:
1
Bases de dados:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Assunto da revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Ano de publicação:
2014
Tipo de documento:
Article
País de afiliação:
China