Your browser doesn't support javascript.
loading
Unimolecular thermal decomposition of dimethoxybenzenes.
Robichaud, David J; Scheer, Adam M; Mukarakate, Calvin; Ormond, Thomas K; Buckingham, Grant T; Ellison, G Barney; Nimlos, Mark R.
Afiliação
  • Robichaud DJ; National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA.
  • Scheer AM; National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA.
  • Mukarakate C; National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA.
  • Ormond TK; National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA.
  • Buckingham GT; National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA.
  • Ellison GB; Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, Colorado 80309-0215, USA.
  • Nimlos MR; National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA.
J Chem Phys ; 140(23): 234302, 2014 Jun 21.
Article em En | MEDLINE | ID: mdl-24952536
ABSTRACT
The unimolecular thermal decomposition mechanisms of o-, m-, and p-dimethoxybenzene (CH3O-C6H4-OCH3) have been studied using a high temperature, microtubular (µtubular) SiC reactor with a residence time of 100 µs. Product detection was carried out using single photon ionization (SPI, 10.487 eV) and resonance enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry and matrix infrared absorption spectroscopy from 400 K to 1600 K. The initial pyrolytic step for each isomer is methoxy bond homolysis to eliminate methyl radical. Subsequent thermolysis is unique for each isomer. In the case of o-CH3O-C6H4-OCH3, intramolecular H-transfer dominates leading to the formation of o-hydroxybenzaldehyde (o-HO-C6H4-CHO) and phenol (C6H5OH). Para-CH3O-C6H4-OCH3 immediately breaks the second methoxy bond to form p-benzoquinone, which decomposes further to cyclopentadienone (C5H4=O). Finally, the m-CH3O-C6H4-OCH3 isomer will predominantly follow a ring-reduction/CO-elimination mechanism to form C5H4=O. Electronic structure calculations and transition state theory are used to confirm mechanisms and comment on kinetics. Implications for lignin pyrolysis are discussed.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Benzaldeídos / Hidrogênio Idioma: En Revista: J Chem Phys Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Benzaldeídos / Hidrogênio Idioma: En Revista: J Chem Phys Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos