Your browser doesn't support javascript.
loading
Bayesian semiparametric regression in the presence of conditionally heteroscedastic measurement and regression errors.
Sarkar, Abhra; Mallick, Bani K; Carroll, Raymond J.
Afiliação
  • Sarkar A; Department of Statistics, Texas A&M University, College Station, Texas 77843-3143, U.S.A.
Biometrics ; 70(4): 823-34, 2014 Dec.
Article em En | MEDLINE | ID: mdl-24965117
We consider the problem of robust estimation of the regression relationship between a response and a covariate based on sample in which precise measurements on the covariate are not available but error-prone surrogates for the unobserved covariate are available for each sampled unit. Existing methods often make restrictive and unrealistic assumptions about the density of the covariate and the densities of the regression and the measurement errors, for example, normality and, for the latter two, also homoscedasticity and thus independence from the covariate. In this article we describe Bayesian semiparametric methodology based on mixtures of B-splines and mixtures induced by Dirichlet processes that relaxes these restrictive assumptions. In particular, our models for the aforementioned densities adapt to asymmetry, heavy tails and multimodality. The models for the densities of regression and measurement errors also accommodate conditional heteroscedasticity. In simulation experiments, our method vastly outperforms existing methods. We apply our method to data from nutritional epidemiology.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Algoritmos / Modificador do Efeito Epidemiológico / Análise de Regressão / Interpretação Estatística de Dados / Modelos Estatísticos / Teorema de Bayes Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Biometrics Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Algoritmos / Modificador do Efeito Epidemiológico / Análise de Regressão / Interpretação Estatística de Dados / Modelos Estatísticos / Teorema de Bayes Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Biometrics Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos