Your browser doesn't support javascript.
loading
Glutathione and mitochondria determine acute defense responses and adaptive processes in cadmium-induced oxidative stress and toxicity of the kidney.
Nair, Ambily Ravindran; Lee, Wing-Kee; Smeets, Karen; Swennen, Quirine; Sanchez, Amparo; Thévenod, Frank; Cuypers, Ann.
Afiliação
  • Nair AR; Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium. ambilinair2006@gmail.com.
  • Lee WK; Chair of Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany. Wing-Kee.Lee@uni-wh.de.
  • Smeets K; Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium. karen.smeets@uhasselt.be.
  • Swennen Q; Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium. quirine.swennen@uhasselt.be.
  • Sanchez A; Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium. acastrosan@gmail.com.
  • Thévenod F; Chair of Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany. frank.thevenod@uni-wh.de.
  • Cuypers A; Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium. ann.cuypers@uhasselt.be.
Arch Toxicol ; 89(12): 2273-89, 2015 Dec.
Article em En | MEDLINE | ID: mdl-25388156
ABSTRACT
Cadmium (Cd(2+)) induces oxidative stress that ultimately defines cell fate and pathology. Mitochondria are the main energy-producing organelles in mammalian cells, but they also have a central role in formation of reactive oxygen species, cell injury, and death signaling. As the kidney is the major target in Cd(2+) toxicity, the roles of oxidative signature and mitochondrial function and biogenesis in Cd(2+)-related stress outcomes were investigated in vitro in cultured rat kidney proximal tubule cells (PTCs) (WKPT-0293 Cl.2) for acute Cd(2+) toxicity (1-30 µM, 24 h) and in vivo in Fischer 344 rats for sub-chronic Cd(2+) toxicity (1 mg/kg CdCl2 subcutaneously, 13 days). Whereas 30 µM Cd(2+) caused ~50 % decrease in cell viability, apoptosis peaked at 10 µM Cd(2+) in PTCs. A steep, dose-dependent decline in reduced glutathione (GSH) content occurred after acute exposure and an increase of the oxidized glutathione (GSSG)/GSH ratio. Quantitative PCR analyses evidenced increased antioxidative enzymes (Sod1, Gclc, Gclm), proapoptotic Bax, metallothioneins 1A/2A, and decreased antiapoptotic proteins (Bcl-xL, Bcl-w). The positive regulator of mitochondrial biogenesis Pparγ and mitochondrial DNA was increased, and cellular ATP was unaffected with Cd(2+) (1-10 µM). In vivo, active caspase-3, and hence apoptosis, was detected by FLIVO injection in the kidney cortex of Cd(2+)-treated rats together with an increase in Bax mRNA. However, antiapoptotic genes (Bcl-2, Bcl-xL, Bcl-w) were also upregulated. Both GSSG and GSH increased with chronic Cd(2+) exposure with no change in GSSG/GSH ratio and augmented expression of antioxidative enzymes (Gpx4, Prdx2). Mitochondrial DNA, mitofusin 2, and Pparα were increased indicating enhanced mitochondrial biogenesis and fusion. Hence, these results demonstrate a clear involvement of higher mitochondria copy numbers or mass and mitochondrial function in acute defense against oxidative stress induced by Cd(2+) in renal PTCs as well as in adaptive processes associated with chronic renal Cd(2+) toxicity.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Estresse Oxidativo / Cloreto de Cádmio / Glutationa / Mitocôndrias Limite: Animals Idioma: En Revista: Arch Toxicol Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Bélgica

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Estresse Oxidativo / Cloreto de Cádmio / Glutationa / Mitocôndrias Limite: Animals Idioma: En Revista: Arch Toxicol Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Bélgica