Your browser doesn't support javascript.
loading
Ligand-mediated friction determines morphodynamics of spreading T cells.
Dillard, Pierre; Varma, Rajat; Sengupta, Kheya; Limozin, Laurent.
Afiliação
  • Dillard P; Adhesion & Inflammation, Aix-Marseille University, Inserm UMR 1067, CNRS UMR 7333, Marseille, France; CINAM, Aix-Marseille University, CNRS UMR 7325, Marseille, France.
  • Varma R; Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD.
  • Sengupta K; CINAM, Aix-Marseille University, CNRS UMR 7325, Marseille, France. Electronic address: sengupta@cinam.univ-mrs.fr.
  • Limozin L; Adhesion & Inflammation, Aix-Marseille University, Inserm UMR 1067, CNRS UMR 7333, Marseille, France. Electronic address: laurent.limozin@inserm.fr.
Biophys J ; 107(11): 2629-38, 2014 Dec 02.
Article em En | MEDLINE | ID: mdl-25468342
ABSTRACT
Spreading of T cells on antigen presenting cells is a crucial initial step in immune response. Spreading occurs through rapid morphological changes concomitant with the reorganization of surface receptors and of the cytoskeleton. Ligand mobility and frictional coupling of receptors to the cytoskeleton were separately recognized as important factors but a systematic study to explore their biophysical role in spreading was hitherto missing. To explore the impact of ligand mobility, we prepared chemically identical substrates on which molecules of anti-CD3 (capable of binding and activating the T cell receptor complex), were either immobilized or able to diffuse. We quantified the T cell spreading area and cell edge dynamics using quantitative reflection interference contrast microscopy, and imaged the actin distribution. On mobile ligands, as compared to fixed ligands, the cells spread much less, the actin is centrally, rather than peripherally distributed and the edge dynamics is largely altered. Blocking myosin-II or adding molecules of ICAM1 on the substrate largely abrogates these differences. We explain these observations by building a model based on the balance of forces between activation-dependent actin polymerization and actomyosin-generated tension on one hand, and on the frictional coupling of the ligand-receptor complexes with the actin cytoskeleton, the membrane and the substrate, on the other hand. Introducing the measured edge velocities in the model, we estimate the coefficient of frictional coupling between T Cell receptors or LFA-1 and the actin cytoskeleton. Our results provide for the first time, to our knowledge, a quantitative framework bridging T cell-specific biology with concepts developed for integrin-based mechanisms of spreading.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Linfócitos T / Movimento Celular / Fricção / Forma Celular Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Biophys J Ano de publicação: 2014 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Linfócitos T / Movimento Celular / Fricção / Forma Celular Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Biophys J Ano de publicação: 2014 Tipo de documento: Article País de afiliação: França