Your browser doesn't support javascript.
loading
Segmentation of cerebrovascular pathologies in stroke patients with spatial and shape priors.
Med Image Comput Comput Assist Interv ; 17(Pt 2): 773-80, 2014.
Article em En | MEDLINE | ID: mdl-25485450
We propose and demonstrate an inference algorithm for the automatic segmentation of cerebrovascular pathologies in clinical MR images of the brain. Identifying and differentiating pathologies is important for understanding the underlying mechanisms and clinical outcomes of cerebral ischemia. Manual delineation of separate pathologies is infeasible in large studies of stroke that include thousands of patients. Unlike normal brain tissues and structures, the location and shape of the lesions vary across patients, presenting serious challenges for prior-driven segmentation. Our generative model captures spatial patterns and intensity properties associated with different cerebrovascular pathologies in stroke patients. We demonstrate the resulting segmentation algorithm on clinical images of a stroke patient cohort.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Encéfalo / Reconhecimento Automatizado de Padrão / Imageamento por Ressonância Magnética / Interpretação de Imagem Assistida por Computador / Técnica de Subtração / Acidente Vascular Cerebral / Leucoaraiose Tipo de estudo: Diagnostic_studies / Etiology_studies / Guideline / Prognostic_studies Limite: Humans Idioma: En Revista: Med Image Comput Comput Assist Interv Assunto da revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Encéfalo / Reconhecimento Automatizado de Padrão / Imageamento por Ressonância Magnética / Interpretação de Imagem Assistida por Computador / Técnica de Subtração / Acidente Vascular Cerebral / Leucoaraiose Tipo de estudo: Diagnostic_studies / Etiology_studies / Guideline / Prognostic_studies Limite: Humans Idioma: En Revista: Med Image Comput Comput Assist Interv Assunto da revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA Ano de publicação: 2014 Tipo de documento: Article