Your browser doesn't support javascript.
loading
The evolution of cyclopropenium ions into functional polyelectrolytes.
Jiang, Yivan; Freyer, Jessica L; Cotanda, Pepa; Brucks, Spencer D; Killops, Kato L; Bandar, Jeffrey S; Torsitano, Christopher; Balsara, Nitash P; Lambert, Tristan H; Campos, Luis M.
Afiliação
  • Jiang Y; Department of Chemistry, Columbia University, New York, New York 10027, USA.
  • Freyer JL; Department of Chemistry, Columbia University, New York, New York 10027, USA.
  • Cotanda P; 1] Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA [2] Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA.
  • Brucks SD; Department of Chemistry, Columbia University, New York, New York 10027, USA.
  • Killops KL; Edgewood Chemical Biological Center, Aberdeen Proving Ground, Aberdeen, Maryland 21010, USA.
  • Bandar JS; Department of Chemistry, Columbia University, New York, New York 10027, USA.
  • Torsitano C; Department of Chemistry, Columbia University, New York, New York 10027, USA.
  • Balsara NP; 1] Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA [2] Materials Sciences Division, Environmental Energy Technologies Division and Joint Center for Energy Storage, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  • Lambert TH; Department of Chemistry, Columbia University, New York, New York 10027, USA.
  • Campos LM; Department of Chemistry, Columbia University, New York, New York 10027, USA.
Nat Commun ; 6: 5950, 2015 Jan 09.
Article em En | MEDLINE | ID: mdl-25575214
ABSTRACT
Versatile polyelectrolytes with tunable physical properties have the potential to be transformative in applications such as energy storage, fuel cells and various electronic devices. Among the types of materials available for these applications, nanostructured cationic block copolyelectrolytes offer mechanical integrity and well-defined conducting paths for ionic transport. To date, most cationic polyelectrolytes bear charge formally localized on heteroatoms and lack broad modularity to tune their physical properties. To overcome these challenges, we describe herein the development of a new class of functional polyelectrolytes based on the aromatic cyclopropenium ion. We demonstrate the facile synthesis of a series of polymers and nanoparticles based on monomeric cyclopropenium building blocks incorporating various functional groups that affect physical properties. The materials exhibit high ionic conductivity and thermal stability due to the nature of the cationic moieties, thus rendering this class of new materials as an attractive alternative to develop ion-conducting membranes.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Polímeros / Eletrólitos / Íons Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Polímeros / Eletrólitos / Íons Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos